Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 074202    DOI: 10.1088/1674-1056/27/7/074202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Super-resolution imaging via sparsity constraint and sparse speckle illumination

Pengwei Wang(王鹏威)1,2, Wei Li(李伟)2,3, Chenglong Wang(王成龙)1,2, Zunwang Bo(薄遵望)1, Wenlin Gong(龚文林)1
1 Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Academy of Opto-electronics, Chinese Academy of Sciences, Beijing 100094, China
Abstract  We present an imaging approach via sparsity constraint and sparse speckle illumination which can dramatically enhance the optical system's imaging resolution. When the object is illuminated by some sparse speckles and the sparse reconstruction algorithm is utilized to restore the blur image, numerical simulated results demonstrate that the image, whose resolution exceeds the Rayleigh limit, can be stably reconstructed even if the detection signal-to-noise ratio (SNR) is less than 10 dB. Factors affecting the quality of the reconstructed image, such as the coded pattern's sparsity and the detection SNR, are also studied.
Keywords:  imaging      and      optical      processing  
Received:  05 February 2018      Revised:  19 March 2018      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61571427).
Corresponding Authors:  Wenlin Gong     E-mail:  gongwl@siom.ac.cn

Cite this article: 

Pengwei Wang(王鹏威), Wei Li(李伟), Chenglong Wang(王成龙), Zunwang Bo(薄遵望), Wenlin Gong(龚文林) Super-resolution imaging via sparsity constraint and sparse speckle illumination 2018 Chin. Phys. B 27 074202

[1] Rayleigh L 1879 Philos. Mag. 5 261
[2] Park S C, Park M K and Kang M G 2003 IEEE Signal Process Mag. 20 21
[3] Szameit A, Segev M, Gazit S and Eldar Y C 2009 Opt. Express 17 23920
[4] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett. 35 1148
[5] Xue C B, Yao X R, Li L Z, Li X F, Yu W K, Guo X Y, Zhai G J and Zhao Q 2017 Chin. Phys. B 26 024203
[6] Yang J, Wright J, Huang T S and Ma Y 2010 IEEE Trans. Image Process. 19 2861
[7] Schulz R R and Stevenson R L 1996 IEEE Trans. Image Process. 5 996
[8] Elad M and Feuer A 1997 IEEE Trans. Image Process. 6 1646
[9] Gong W L and Han S S 2015 Sci. Rep. 5 9280
[10] Gong W L 2015 Photon. Res. 3 234
[11] Hell S W and Wichmann J 1994 Opt. Lett. 19 780
[12] Rust M J, Bates M and Zhuang X 2010 Nat. Methods 3 793
[13] Mudry E, Belkebir K, Girard J, Savatier J, Moal E L, Nicoletti C, Allain M and Sentenac A 2012 Nat. Photon. 6 312
[14] York A G, Parekh S H, Nogare D D, Fischer R S, Temprine K, Mione M, Chitnis A B, Combs C A and Shroff H 2012 Nat. Methods 9 749
[15] Min J, Jang J, Keum D, Ryu S W, Choi C, Jeong K H and Ye J 2013 Sci. Rep. 2075
[16] Goodman J W 1968 Introduction to Fourier Optics (New York:McGraw-Hill)
[17] Hunt B R 1995 Int. J. Imaging Syst. Technol. 6 297
[18] Kolobov M I 2007 Quantum Imaging (New York:Springer) Chap. 6
[19] Zhang P, GongW, Shen X, Huang D and Han S 2009 Opt. Lett. 34 1222
[20] Lucy L B 1974 Astron. J. 79 745
[21] Richardson and William H 1972 J. Opt. Soc. Am. 62 55
[22] Zhao G Y, Zheng C, Fang Y, Kuang C F and Liu X 2017 Acta Phys. Sin. 66 148702
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[4] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[5] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[6] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[7] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[8] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[9] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[10] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[11] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[12] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[13] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[14] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[15] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
No Suggested Reading articles found!