Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 108502    DOI: 10.1088/1674-1056/26/10/108502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-temperature superconducting filter using self-embedding asymmetric stepped impedance resonator with wide stopband performance and miniaturized size

Dan Wang(王丹)1, Bin Wei(魏斌)1, Yong Heng(衡勇)2, Bi-Song Cao(曹必松)1
1. State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2. Beijing Institute of Electronic System Engineering, Beijing 100854, China
Abstract  In this study, a novel self-embedding asymmetric stepped impedance resonator (SE-ASIR) topology is proposed. By embedding asymmetric stepped impedance resonators in themselves, circuit sizes of ASIRs can be reduced effectively, while the ability to control spurious modes of ASIRs remains. Therefore, SE-ASIRs are suitable for being used to design filters with wide stopbands and miniaturized sizes. Furthermore, the construction process of the SE-ASIR is described in detail, and an equivalent model of the SE-ASIR is proposed. For demonstration, a high-temperature superconducting bandpass filter centered at 1112 MHz is designed and fabricated. The measured result agrees well with the simulation result and shows that the out-of-band rejection is better than 60 dB up to 4088 MHz, which is about 3.7 times the center frequency. The filter circuit size is 31 mm×13 mm or 0.28 λg×0.12 λg, where λg is the guided wavelength at 1112 MHz.
Keywords:  high-temperature superconducting      bandpass filter      microstrip filter      wide stopband  
Received:  28 April 2017      Revised:  12 June 2017      Accepted manuscript online: 
PACS:  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61371009) and the National High Technology Research and Development Program of China (Grant No. 2014AA032703).
Corresponding Authors:  Bin Wei     E-mail:  weibin@mail.tsinghua.edu.cn

Cite this article: 

Dan Wang(王丹), Bin Wei(魏斌), Yong Heng(衡勇), Bi-Song Cao(曹必松) High-temperature superconducting filter using self-embedding asymmetric stepped impedance resonator with wide stopband performance and miniaturized size 2017 Chin. Phys. B 26 108502

[1] Zhang Q S, Zhu F J and Zhou H S 2015 Chin. Phys. B 24 107506
[2] Liu X Y, Zhu L and Feng Y J 2016 Chin. Phys. B 25 034101
[3] Zeng Z, Yao Y and Zhuang Y 2015 Acta Phys. Sin. 64 164101(in Chinese)
[4] Chang C Y and Itoh T 1991 IEEE Trans. Microw. Theory Techniq. 39 310
[5] Lin S, Deng P, Lin Y, Wang C and Chen C H 2006 IEEE Trans. Microw. Theory Techniq. 54 1011
[6] Wang D, Wei B, Cao B, Chen J, Zhen T and Gao T 2015 IEEE Microw. Wireless Compon. Lett. 25 703
[7] Ying Z, Guo X, Cao B, Zhang X, Wei B, Zhang Y, Li Q, Feng C, Song X, Heng Y and Zhang G 2013 IEEE Trans. Appl. Supercond. 23 1500706
[8] Luo X, Ma J, Li E and Ma K 2011 IEEE Trans. Electromagn. Compat. 53 717
[9] Mitsuo M and Sadahiko Y 1980 IEEE Trans. Microw. Theory Techniq. 28 1413
[10] Li Q, Guo X, Zhang X, Wei B, Chen W, Zhang Y, Feng C, Yin Z, Jin S and Cao B 2012 Physica C 483 5
[11] Jen-Tsai K and Erik S 2003 IEEE Trans. Microw. Theory Techniq. 51 1554
[12] Tang C and Chen M 2006 IEEE Microw. Wireless Compon. Lett. 16 666
[13] Kongpop U, Edward J W, Terence A D, John P and Joy L 2006 IEEE Trans. Microw. Theory Techniq. 54 1237
[14] Kuo T N, Li W C, Wang C H and Chen C H 2008 IEEE Microw. Wireless Compon. Lett. 18 389
[15] Xu J, Ji Y X, Miao C and Wu W 2013 IEEE Microw. Wireless Compon. Lett. 23 338
[16] Kuan H, Lin Y L, Yang R Y and Chang Y C 2010 IEEE Microw. Wireless Compon. Lett. 20 25
[17] Wu H W and Yang R Y 2011 IEEE Microw. Wireless Compon. Lett. 21 203
[18] Kim C H and Chang K 2011 IEEE Trans. Microw. Theory Techniq. 59 3037
[19] Liu H, Ren B, Li S, Guan X, Wen P, Xiao X and Peng Y 2015 IEEE Trans. Appl. Supercond. 25 1501606
[20] Kim C H and Chang K 2013 IEEE Microw. Wireless Compon. Lett. 23 69
[21] Chang Y C, Kao C H, Weng M H and Yang R Y 2008 IEEE Microw. Wireless Compon. Lett. 18 770
[22] Raafat R M 2002 IEEE Trans. Microw. Theory Techniq. 50 750
[23] Li H C, Wang R L, Wei B and Zhen D N 2005 Acta Phys. Sin. 54 359(in Chinese)
[24] Sun L and He Y 2014 IEEE Trans. Appl. Supercond. 24 1501308
[25] Gao T, Wei B and Heng Y 2017 Chin. Phys. B 26 058503
[26] Zuo T, Zhao X J, Wang X K, Yue H W, Fang L and Yan S L 2009 Acta Phys. Sin. 58 4194(in Chinese)
[27] Cui B, Zhang X Q, Sun L, Bian Y B, Guo J, Wang J, Li C G, Li H, Zhang Q and He Y S 2010 Sci. Bull. 55 1367
[28] Hong J S 2011 Microstrip Filters for RF/microwave Applications, 2nd edn. (New York:Wiley)
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[3] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[4] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[5] Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure
Lin Tao(陶琳), Bin Wei(魏斌), Xubo Guo(郭旭波), Hongcheng Li(李宏成), Chenjie Luo(骆晨杰), Bisong Cao(曹必松), Linan Jiang(姜立楠). Chin. Phys. B, 2020, 29(6): 068502.
[6] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[7] Compact wide stopband superconducting bandpass filter using modified spiral resonators with interdigital structure
Di Wu(吴荻), Bin Wei(魏斌), Bo Li(李博), Xu-Bo Guo(郭旭波), Xin-Xiang Lu(卢新祥), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068502.
[8] Compact high-order quint-band superconducting band-pass filter
Di Wu(吴荻), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xin-Xiang Lu(卢新祥), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2018, 27(6): 068503.
[9] Design and theoretical study of a polarization-insensitive multiband terahertz metamaterial bandpass filter
Hai-Peng Li(李海鹏), Wen-Yue Fu(付文悦), Xiao-Peng Shen(沈晓鹏), Kui Han(韩奎), Wei-Hua Wang(王伟华). Chin. Phys. B, 2017, 26(12): 127801.
[10] Compact superconducting single-and dual-band filter design using multimode stepped-impedance resonator
Xiang Wang(王翔), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(12): 128501.
[11] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[12] A dual-band flexible frequency selective surface with miniaturized elements and maximally flat (Butterworth) response
Wang Xiu-Zhi (王秀芝), Gao Jin-Song (高劲松), Xu Nian-Xi (徐念喜), Liu Hai (刘海). Chin. Phys. B, 2014, 23(4): 047303.
No Suggested Reading articles found!