|
|
Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids |
Jun Liu(柳军)1, Hua Tong(童华)2,†, Yunhuan Nie(聂运欢)1, and Ning Xu(徐宁)1,‡ |
1 Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance, and Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract In marginally jammed solids confined by walls, we calculate the particle and ensemble averaged value of an order parameter, $\left<\varPsi(r)\right>$, as a function of the distance to the wall, r. Being a microscopic indicator of structural disorder and particle mobility in solids, $\varPsi$ is by definition the response of the mean square particle displacement to the increase of temperature in the harmonic approximation and can be directly calculated from the normal modes of vibration of the zero-temperature solids. We find that, in confined jammed solids, $\left<\varPsi(r)\right>$ curves at different pressures can collapse onto the same master curve following a scaling function, indicating the criticality of the jamming transition. The scaling collapse suggests a diverging length scale and marginal instability at the jamming transition, which should be accessible to sophisticatedly designed experiments. Moreover, $\left<\varPsi(r)\right>$ is found to be significantly suppressed when approaching the wall and anisotropic in directions perpendicular and parallel to the wall. This finding can be applied to understand the r-dependence and anisotropy of the structural relaxation in confined supercooled liquids, providing another example of understanding or predicting behaviors of supercooled liquids from the perspective of the zero-temperature amorphous solids.
|
Received: 09 September 2020
Revised: 10 October 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
63.50.Lm
|
(Glasses and amorphous solids)
|
|
61.43.-j
|
(Disordered solids)
|
|
63.50.-x
|
(Vibrational states in disordered systems)
|
|
71.55.Jv
|
(Disordered structures; amorphous and glassy solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11734014). |
Corresponding Authors:
†Corresponding author. E-mail: huatong@sjtu.edu.cn ‡Corresponding author. E-mail: ningxu@ustc.edu.cn
|
Cite this article:
Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁) Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids 2020 Chin. Phys. B 29 126302
|
[1] Debenedetti P G and Stillinger F H Nature 410 259 https://www.nature.com/articles/350657042001 [2] Liu A J and Nagel S R Nature 396 21 https://www.nature.com/articles/238191998 [3] Berthier L and Biroli G Rev. Mod. Phys. 83 587 https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.83.5872011 [4] O'Hern C S, Silbert L E, Liu A J and Nagel S R Phys. Rev. E 68 011306 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.68.0113062003 [5] Liu A J and Nagel S R Annu. Rev. Condens. Matter Phys. 1 347 https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-070909-1040452010 [6] van Hecke M J. Phys.: Condens. Matter 22 033101 https://iopscience.iop.org/article/10.1088/0953-8984/22/3/033101/meta2010 [7] Xu N Front. Phys. 6 109 https://link.springer.com/article/10.1007/s11467-010-0102-y2011 [8] Xu N Chinese J. Polym. Sci. 37 1065 https://link.springer.com/article/10.1007/s10118-019-2304-22019 [9] Ikeda A, Berthier L and Sollich P Phys. Rev. Lett. 109 018301 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.0183012012 [10] Parisi G and Zamponi F Rev. Mod. Phys. 82 789 https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.7892010 [11] Charbonneau P, Kurchan J, Parisi G, Urbani P and Zamponi F Annu. Rev. Condens. Matter Phys. 8 265 https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-031016-0253342017 [12] Silbert L E, Liu A J and Nagel S R Phys. Rev. Lett. 95 098301 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.0983012005 [13] Wyart M Ann. Phys. Fr. 30 1 https://www.annphys.org/articles/anphys/abs/2005/03/ann032005/ann032005.html2005 [14] Wyart M, Silbert L E, Nagel S R and Witten T A Phys. Rev. E 72 051306 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.72.0513062005 [15] Wyart M, Nagel S R and Witten T A. Europhys. Lett. 72 486 https://iopscience.iop.org/article/10.1209/epl/i2005-10245-52005 [16] Xu N, Vitelli V, Wyart M, Liu A J and Nagel S R Phys. Rev. Lett. 102 038001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.0380012009 [17] Wang X, Zheng W, Wang L and Xu N Phys. Rev. Lett. 114 035502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.0355022015 [18] Nie Y, Tong H, Liu J, Zu M and Xu N Front. Phys. 12 126301 https://link.springer.com/article/10.1007/s11467-017-0668-82017 [19] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R Nat. Phys. 4 711 https://www.nature.com/articles/nphys10252008 [20] Chen K, Manning M L, Yunker P J, Ellenbroek W G, Zhang Z, Liu A J and Yodh A G Phys. Rev. Lett. 107 108301 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.1083012011 [21] Wang L and Xu N Phys. Rev. Lett. 112 055701 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.0557012014 [22] Tong H and Tanaka H Phys. Rev. Lett. 124 225501 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.2255012020 [23] Berthier L and Tarjus G Phys. Rev. Lett. 103 170601 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.1706012009 [24] Tong H, Hu H, Tan P, Xu N and Tanaka H Phys. Rev. Lett. 122 215502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.2155022019 [25] Tong H and Xu N Phys. Rev. E 90 010401(R) https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.0104012014 [26] Yang X, Liu R, Yang M, Wang W H and Chen K Phys. Rev. Lett. 116 238003 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.2380032016 [27] Yang X, Tong H, Wang W H and Chen K Phys. Rev. E 99 062610 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.0626102019 [28] Tanaka H, Tong H, Shi R and Russo J Nature Rev. Phys. 1 333 https://www.nature.com/articles/s42254-019-0053-32019 [29] Watanabe K, Kawasaki T and Tanaka H Nat. Mater. 10 512 https://www.nature.com/articles/nmat30342011 [30] Scheidler P, Kob W and Binder K Europhys. Lett. 59 701 https://iopscience.iop.org/article/10.1209/epl/i2002-00182-92002 [31] Cao C, Huang X, Roth C B and Weeks E R J. Chem. Phys. 147 224505 https://aip.scitation.org/doi/full/10.1063/1.50004452017 [32] Hocky G M, Berthier L, Kob W and Reichman D R Phys. Rev. E 89 052311 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.0523112014 [33] Bitzek E, Koskinen P, Gahler F, Moseler M and Gumbsch P Phys. Rev. Lett. 97 170201 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.1702012006 [34] Olsson P and Teitel S Phys. Rev. Lett. 99 178001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.1780012007 [35] Ellenbroek W G, Somfai E, van Hecke M and van Saarloos W Phys. Rev. Lett. 97 258001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.2580012006 [36] Wang L and Xu N Soft Matter 92475 https://pubs.rsc.org/en/content/articlelanding/2013/sm/c2sm27148f#!divAbstract2013 [37] Graves A L, Nashed S, Padgett E, Goodrich C P, Liu A J and Sethna J P Phys. Rev. Lett. 116 235501 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.2355012016 [38] Liu H, Xie X and Xu N Phys. Rev. Lett. 112 145502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.1455022014 [39] Goodrich C P, Liu A J and Nagel S R Phys. Rev. Lett. 109 095704 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.0957042012 [40] Liao Q and Xu N Soft Matter 14 853 https://pubs.rsc.org/en/content/articlelanding/2018/sm/c7sm01909b#!divAbstract2018 [41] Lerner E, During G and Bouchbinder E Phys. Rev. Lett. 117 035501 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.0355012016 [42] Lerner E and Bouchbinder E Phys. Rev. E 96 020104(R) https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.0201042017 [43] Mizuno H, Shiba H and Ikeda A Proc. Natl. Acad. Sci. USA 114 E9767 https://www.pnas.org/content/114/46/E9767.short2017 [44] Charbonneau P, Corwin E I, Parisi G, Poncet A and Zamponi F Phys. Rev. Lett. 117 045503 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.0455032016 [45] Xu N, Liu A J and Nagel S R Phys. Rev. Lett. 119 215502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.2155022017 [46] Xu N, Vitelli V, Liu A J and Nagel S R Europhys. Lett. 90 56001 https://iopscience.iop.org/article/10.1209/0295-5075/90/560012010 [47] Nie Y, Liu J, Guo J and Xu N Nat. Commun. 113198 https://www.nature.com/articles/s41467-020-16986-z2020 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|