Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 126302    DOI: 10.1088/1674-1056/abc160
RAPID COMMUNICATION Prev   Next  

Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids

Jun Liu(柳军)1, Hua Tong(童华)2,†, Yunhuan Nie(聂运欢)1, and Ning Xu(徐宁)1,
1 Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Microscale Magnetic Resonance, and Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  In marginally jammed solids confined by walls, we calculate the particle and ensemble averaged value of an order parameter, $\left<\varPsi(r)\right>$, as a function of the distance to the wall, r. Being a microscopic indicator of structural disorder and particle mobility in solids, $\varPsi$ is by definition the response of the mean square particle displacement to the increase of temperature in the harmonic approximation and can be directly calculated from the normal modes of vibration of the zero-temperature solids. We find that, in confined jammed solids, $\left<\varPsi(r)\right>$ curves at different pressures can collapse onto the same master curve following a scaling function, indicating the criticality of the jamming transition. The scaling collapse suggests a diverging length scale and marginal instability at the jamming transition, which should be accessible to sophisticatedly designed experiments. Moreover, $\left<\varPsi(r)\right>$ is found to be significantly suppressed when approaching the wall and anisotropic in directions perpendicular and parallel to the wall. This finding can be applied to understand the r-dependence and anisotropy of the structural relaxation in confined supercooled liquids, providing another example of understanding or predicting behaviors of supercooled liquids from the perspective of the zero-temperature amorphous solids.
Keywords:  jamming transition      supercooled liquids      amorphous solids      criticality  
Received:  09 September 2020      Revised:  10 October 2020      Accepted manuscript online:  15 October 2020
PACS:  63.50.Lm (Glasses and amorphous solids)  
  61.43.-j (Disordered solids)  
  63.50.-x (Vibrational states in disordered systems)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11734014).
Corresponding Authors:  Corresponding author. E-mail: huatong@sjtu.edu.cn Corresponding author. E-mail: ningxu@ustc.edu.cn   

Cite this article: 

Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁) Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids 2020 Chin. Phys. B 29 126302

[1] Debenedetti P G and Stillinger F H Nature 410 259 https://www.nature.com/articles/350657042001
[2] Liu A J and Nagel S R Nature 396 21 https://www.nature.com/articles/238191998
[3] Berthier L and Biroli G Rev. Mod. Phys. 83 587 https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.83.5872011
[4] O'Hern C S, Silbert L E, Liu A J and Nagel S R Phys. Rev. E 68 011306 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.68.0113062003
[5] Liu A J and Nagel S R Annu. Rev. Condens. Matter Phys. 1 347 https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-070909-1040452010
[6] van Hecke M J. Phys.: Condens. Matter 22 033101 https://iopscience.iop.org/article/10.1088/0953-8984/22/3/033101/meta2010
[7] Xu N Front. Phys. 6 109 https://link.springer.com/article/10.1007/s11467-010-0102-y2011
[8] Xu N Chinese J. Polym. Sci. 37 1065 https://link.springer.com/article/10.1007/s10118-019-2304-22019
[9] Ikeda A, Berthier L and Sollich P Phys. Rev. Lett. 109 018301 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.0183012012
[10] Parisi G and Zamponi F Rev. Mod. Phys. 82 789 https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.82.7892010
[11] Charbonneau P, Kurchan J, Parisi G, Urbani P and Zamponi F Annu. Rev. Condens. Matter Phys. 8 265 https://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-031016-0253342017
[12] Silbert L E, Liu A J and Nagel S R Phys. Rev. Lett. 95 098301 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.95.0983012005
[13] Wyart M Ann. Phys. Fr. 30 1 https://www.annphys.org/articles/anphys/abs/2005/03/ann032005/ann032005.html2005
[14] Wyart M, Silbert L E, Nagel S R and Witten T A Phys. Rev. E 72 051306 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.72.0513062005
[15] Wyart M, Nagel S R and Witten T A. Europhys. Lett. 72 486 https://iopscience.iop.org/article/10.1209/epl/i2005-10245-52005
[16] Xu N, Vitelli V, Wyart M, Liu A J and Nagel S R Phys. Rev. Lett. 102 038001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.0380012009
[17] Wang X, Zheng W, Wang L and Xu N Phys. Rev. Lett. 114 035502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.0355022015
[18] Nie Y, Tong H, Liu J, Zu M and Xu N Front. Phys. 12 126301 https://link.springer.com/article/10.1007/s11467-017-0668-82017
[19] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R Nat. Phys. 4 711 https://www.nature.com/articles/nphys10252008
[20] Chen K, Manning M L, Yunker P J, Ellenbroek W G, Zhang Z, Liu A J and Yodh A G Phys. Rev. Lett. 107 108301 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.1083012011
[21] Wang L and Xu N Phys. Rev. Lett. 112 055701 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.0557012014
[22] Tong H and Tanaka H Phys. Rev. Lett. 124 225501 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.2255012020
[23] Berthier L and Tarjus G Phys. Rev. Lett. 103 170601 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.1706012009
[24] Tong H, Hu H, Tan P, Xu N and Tanaka H Phys. Rev. Lett. 122 215502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.2155022019
[25] Tong H and Xu N Phys. Rev. E 90 010401(R) https://journals.aps.org/pre/abstract/10.1103/PhysRevE.90.0104012014
[26] Yang X, Liu R, Yang M, Wang W H and Chen K Phys. Rev. Lett. 116 238003 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.2380032016
[27] Yang X, Tong H, Wang W H and Chen K Phys. Rev. E 99 062610 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.99.0626102019
[28] Tanaka H, Tong H, Shi R and Russo J Nature Rev. Phys. 1 333 https://www.nature.com/articles/s42254-019-0053-32019
[29] Watanabe K, Kawasaki T and Tanaka H Nat. Mater. 10 512 https://www.nature.com/articles/nmat30342011
[30] Scheidler P, Kob W and Binder K Europhys. Lett. 59 701 https://iopscience.iop.org/article/10.1209/epl/i2002-00182-92002
[31] Cao C, Huang X, Roth C B and Weeks E R J. Chem. Phys. 147 224505 https://aip.scitation.org/doi/full/10.1063/1.50004452017
[32] Hocky G M, Berthier L, Kob W and Reichman D R Phys. Rev. E 89 052311 https://journals.aps.org/pre/abstract/10.1103/PhysRevE.89.0523112014
[33] Bitzek E, Koskinen P, Gahler F, Moseler M and Gumbsch P Phys. Rev. Lett. 97 170201 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.1702012006
[34] Olsson P and Teitel S Phys. Rev. Lett. 99 178001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.1780012007
[35] Ellenbroek W G, Somfai E, van Hecke M and van Saarloos W Phys. Rev. Lett. 97 258001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.2580012006
[36] Wang L and Xu N Soft Matter 92475 https://pubs.rsc.org/en/content/articlelanding/2013/sm/c2sm27148f#!divAbstract2013
[37] Graves A L, Nashed S, Padgett E, Goodrich C P, Liu A J and Sethna J P Phys. Rev. Lett. 116 235501 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.2355012016
[38] Liu H, Xie X and Xu N Phys. Rev. Lett. 112 145502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.1455022014
[39] Goodrich C P, Liu A J and Nagel S R Phys. Rev. Lett. 109 095704 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.0957042012
[40] Liao Q and Xu N Soft Matter 14 853 https://pubs.rsc.org/en/content/articlelanding/2018/sm/c7sm01909b#!divAbstract2018
[41] Lerner E, During G and Bouchbinder E Phys. Rev. Lett. 117 035501 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.0355012016
[42] Lerner E and Bouchbinder E Phys. Rev. E 96 020104(R) https://journals.aps.org/pre/abstract/10.1103/PhysRevE.96.0201042017
[43] Mizuno H, Shiba H and Ikeda A Proc. Natl. Acad. Sci. USA 114 E9767 https://www.pnas.org/content/114/46/E9767.short2017
[44] Charbonneau P, Corwin E I, Parisi G, Poncet A and Zamponi F Phys. Rev. Lett. 117 045503 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.0455032016
[45] Xu N, Liu A J and Nagel S R Phys. Rev. Lett. 119 215502 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.2155022017
[46] Xu N, Vitelli V, Liu A J and Nagel S R Europhys. Lett. 90 56001 https://iopscience.iop.org/article/10.1209/0295-5075/90/560012010
[47] Nie Y, Liu J, Guo J and Xu N Nat. Commun. 113198 https://www.nature.com/articles/s41467-020-16986-z2020
[1] Effects of short-range attraction on Jamming transition
Zhenhuan Xu(徐震寰), Rui Wang(王瑞), Jiamei Cui(崔佳梅), Yanjun Liu(刘彦君), and Wen Zheng(郑文). Chin. Phys. B, 2021, 30(6): 066101.
[2] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[3] Quasi-periodic events on structured earthquake models
Bin-Quan Li(李斌全), Zhi-Xi Wu(吴枝喜), Sheng-Jun Wang(王圣军). Chin. Phys. B, 2019, 28(9): 090503.
[4] Supercooled liquids analogous fractional Stokes-Einstein relation in NaCl solution above room temperature
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2019, 28(7): 076107.
[5] Effects of refractory period on dynamical range inexcitable networks
Ya-Qin Dong(董亚琴), Fan Wang(王帆), Sheng-Jun Wang(王圣军), Zi-Gang Huang(黄子罡). Chin. Phys. B, 2019, 28(12): 128701.
[6] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[7] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[8] Modeling the capability of penetrating a jammed crowd to eliminate freezing transition
Mohammed Mahmod Shuaib. Chin. Phys. B, 2016, 25(5): 050501.
[9] Complex force network in marginally and deeply jammed solids
Hu Mao-Bin (胡茂彬), Jiang Rui (姜锐), Wu Qing-Song (吴清松). Chin. Phys. B, 2013, 22(6): 066301.
[10] Direct measurement of the surface dynamics of supercooled liquid-glycerol by optical scanning a film
Zhang Fang(张芳), Zhang Guo-Feng(张国峰), Dong Shuang-Li(董双丽), Sun Jian-Hu(孙建虎), Chen Rui-Yun(陈瑞云), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂). Chin. Phys. B, 2009, 18(9): 3918-3921.
[11] Bursty events and incremental diffusion in a local diffusion and multi-scale convection system
Xu Guo-Sheng (徐国盛), Wan Bao-Nian (万宝年), Song Mei (宋梅). Chin. Phys. B, 2003, 12(2): 189-197.
[12] EARTHQUAKE SCALING PARADOX
Wu Zhong-liang (吴忠良). Chin. Phys. B, 2001, 10(5): 395-397.
[13] SELF-ORGANIZED CRITICALITY IN ONE-DIMENSIONAL PACKET FLOW MODEL
Yuan Jian (袁坚), Ren Yong (任勇), Shan Xiu-ming (山秀明). Chin. Phys. B, 2000, 9(9): 641-648.
[14] LOW TEMPERATURE OPTICAL PROPERTIES OF AMORPHOUS OXIDE NANOCLUSTERS IN POLYMETHYL METHACRYLATE MATRIX
V. V. Volkov, Wang Zhong-lin (王中林), Zou Bing-suo (邹炳锁), Xie Si-shen (解思深). Chin. Phys. B, 2000, 9(10): 767-773.
No Suggested Reading articles found!