Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(6): 2426-2431    DOI: 10.1088/1674-1056/18/6/051
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dynamics simulation on the interaction of intense laser pulses with atomic clusters

Du Hong-Chuan(杜洪川)a), Zhu Peng-Jia(朱鹏佳)a)b), Sun Shao-Hua(孙少华)a), Liu Zuo-Ye(刘作业)a), Li Lu(李露)a), Ma Ling-Ling(马玲玲)a), and Hu Bi-Tao(胡碧涛)a)
a School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; b School of Modern Physics, University of Science and Technology of China, Hefei 200036, China
Abstract  Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly through tunnel ionization in the combined field from ions, electrons and laser, rather than the electron-impact ionization. With increasing cluster size, the average and maximum kinetic energy of the product ion increases. According to our calculation, the expansion process of the clusters after laser irradiation is dominated by Coulomb explosion and the expansion scale increases with increasing cluster size. The dependence of average kinetic energy and average charge state of the product ions on laser wavelength is also presented and discussed. The dependence of average kinetic energy on the number of atoms inside the cluster was studied and compared with the experimental data. Our results agree with the experimental results reasonably well.
Keywords:  intense femtosecond laser pulse      Coulomb explosion      cluster      tunnel ionization  
Received:  23 December 2008      Revised:  06 January 2009      Accepted manuscript online: 
PACS:  33.80.Eh (Autoionization, photoionization, and photodetachment)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  36.40.Sx (Diffusion and dynamics of clusters)  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos 10575046 and 10775062).

Cite this article: 

Du Hong-Chuan(杜洪川), Zhu Peng-Jia(朱鹏佳), Sun Shao-Hua(孙少华), Liu Zuo-Ye(刘作业), Li Lu(李露), Ma Ling-Ling(马玲玲), and Hu Bi-Tao(胡碧涛) Dynamics simulation on the interaction of intense laser pulses with atomic clusters 2009 Chin. Phys. B 18 2426

[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[4] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[7] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[8] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[9] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[10] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[13] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[14] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[15] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
No Suggested Reading articles found!