PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Interaction of intense laser pulses with hydrogen atomic clusters |
Du Hong-Chuan(杜洪川)a), Wang Hui-Qiao(王慧巧) b), Liu Zuo-Ye(刘作业)a), Sun Shao-Hua(孙少华)a), Li Lu(李露)a), Ma Ling-Ling(马玲玲)a), and Hu Bi-Tao(胡碧涛) a)† |
a School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; b Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.
|
Received: 06 May 2009
Revised: 24 July 2009
Accepted manuscript online:
|
PACS:
|
36.40.Wa
|
(Charged clusters)
|
|
33.80.-b
|
(Photon interactions with molecules)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos.~10575046 and
10775062). |
Cite this article:
Du Hong-Chuan(杜洪川), Wang Hui-Qiao(王慧巧), Liu Zuo-Ye(刘作业), Sun Shao-Hua(孙少华), Li Lu(李露), Ma Ling-Ling(马玲玲), and Hu Bi-Tao(胡碧涛) Interaction of intense laser pulses with hydrogen atomic clusters 2010 Chin. Phys. B 19 035202
|
[1] |
Lezius M, Dobosz S, Normand D and Schmidt M 1998 Phys. Rev. Lett. 80 261
|
[2] |
Ditmire T, Tisch J W G, Springate E, Mason M B, Hay N, Smith R A,Marangos J and Hutchinson M H R 1997 Nature 386 54
|
[3] |
McPherson A, Thompson B D, Borisov A B, Boyer K and Rhodes C K 1994 Nature 370 631
|
[4] |
Ditmire T, Tisch J W G, Springate E, Mason M B, Hay N, Marangos J P andHutchinson M H R 1997 Phys. Rev. Lett. 78 2732
|
[5] |
Li Z, Lei A L, Ni G Q and Xu Z Z 2000 Chin. Phys. Lett. 17 99
|
[6] |
Ditmire T, Springate E, Tisch J W G, Shao Y L, Mason M B, Hay N,Marangos J P and Hutchinson M H R 1998 Phys. Rev. A 57 369
|
[7] |
Ditmire T, Zweiback J, Yanovsky V P, Cowan T E, Hays G and Wharton K B 1999 Nature 398 489
|
[8] |
Lu H Y, Chen G L, Li R X, Ni G Q and Wang C 2009 Chin. Phys. B 18 537
|
[9] |
McPherson A, Luk T S, Thompson B D, Boyer K and Rhodes C K 1993 Laser Chem. 57 337
|
[10] |
Boyer K, Thompson B D, Mcpherson A and Rhodes C K 1994 J. Phys. B 27 4373
|
[11] |
Ditmire T, Donnelly T, Falcone A M and Perry M D 1996 Phys. Rev. A 53 3379
|
[12] |
Ditmire T 1998 Phys. Rev. A 57 R4094
|
[13] |
Rose-Petruck C, Schafer K J, Wilson K R and Barty C P J 1997 Phys. Rev. A 55 1182
|
[14] |
Mendham K J, Hay H, Mason M B, Tisch J W G and Marangos J P 2001 Phys. Rev. A 64 055201
|
[15] |
Li H Y, Liu J S, Wang C, Ni G Q, Li R Xand Xu Z Z 2006 Phys. Rev. A 74 023201
|
[16] |
Iast I and Jortner J 2000 Phys. Rev. A 62 013201
|
[17] |
Krainov V P and Roshchupkin A S 2001 Phys. Rev. A 64 063204
|
[18] |
Augst S, Meyerhofer D D, Strickland D and Chint S L1991 J. Opt. Soc. Am. B 8 858
|
[19] |
Augst S, Strickland D, Meyerhofer D D, Chin S L and Eberly J H 1989 Phys. Rev. Lett. 63 2212
|
[20] |
Liu J S, Wang C, Liu B C, Shuai B, Wang W T, Cai Y, Li H Y, Ni G Q, LiR L and Xu Z Z 2006 Phys. Rev. A 73 033201
|
[21] |
Zweiback J, Cowan T E, Hartley J H, Howell R, Wharton K B, Crane J K,Yanovsky V P, Hays G, Smith R A and Ditmire T 2002 Phys. Plasmas 9 3108
|
[22] |
Xia Y, Liu J S, Ni G Q and Xu Z Z 2004 Chin. J. Lasers 31 922 (in Chinese)
|
[23] |
Wu T C and Qiu X J 2005 J. Shanghai University (NaturalScience) 11 174 (in Chinese)
|
[24] |
Nishihara K, Amitani H, Murakami M, Bulanov S V and Esirkepov Z T 2001 Phys. Res. A 464 98
|
[25] |
Du H C, Zhu P J, Sun S H, Liu Z Y, Li L, Mang L L and Hu B T 2009 Chin. Phys. B 18 1674
|
[26] |
Petrov G M and Davis J 2006 Phys. Plasmas 13 033106
|
[27] |
Sakabe S, Shimizu S, Hashida M, Sato F, Tsuyukushi T, Nishihara K,Okihara S, Kagawa T, Izawa Y, Imasaki K and Iida T 2004 Phys. Rev. A 69 023203
|
[28] |
Zheng L, Wang C, Li S H, Liu B C, Ni G Q, Li R X and Xu Z Z 2006 Chin. Phys.15 698
|
[29] |
Chen G L, Wang C, Lu H Y, Li S H, Liu J S, Ni G Q, Liu R X and Xu Z Z2007 J. Phys. B 40 445
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|