|
|
Coulomb explosion of CS2 molecule under an intense femtosecond laser field |
Xiao Wang(王潇)1, Jian Zhang(张健)1, Shi-An Zhang(张诗按)1,2, Zhen-Rong Sun(孙真荣)1 |
1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China; 2. NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China |
|
|
Abstract We experimentally demonstrate the Coulomb explosion process of CS2 molecule under a near-infrared (800 nm) intense femtosecond laser field by a DC-sliced ion imaging technique. We obtain the DC-sliced images of these fragment ions S+, S2+, CS+, and CS2+ by breaking one C-S bond, and assign their Coulomb explosion channels by considering their kinetic energy release and angular distribution. We also numerically simulate the dissociation dynamics of parent ions CS2k+ (k=2-4) by a Coulomb potential approximation, and obtain the time evolution of Coulomb energy and kinetic energy release, which indicates that the dissociation time of parent ions CS2k+ decreases with the increase of the charge number k. These experimental and theoretical results can serve as a useful benchmark for those researchers who work in the related area.
|
Received: 03 November 2015
Revised: 16 January 2016
Accepted manuscript online:
|
PACS:
|
33.80.Gj
|
(Diffuse spectra; predissociation, photodissociation)
|
|
34.20.Gj
|
(Intermolecular and atom-molecule potentials and forces)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51132004 and 11474096), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14JC1401500). We acknowledge the support of the NYU-ECNU Institute of Physics at NYU Shanghai, China. |
Corresponding Authors:
Shi-An Zhang
E-mail: sazhang@phy.ecnu.eddu.cn
|
Cite this article:
Xiao Wang(王潇), Jian Zhang(张健), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣) Coulomb explosion of CS2 molecule under an intense femtosecond laser field 2016 Chin. Phys. B 25 053301
|
[1] |
Vijayalakshmi K, Safvan C P, Kumar G R and Mathur D 1997 Chem. Phys. Lett. 270 37
|
[2] |
Castillejo M, Couris S, Koudoumas E and Martin M 1998 Chem. Phys. Lett. 289 303
|
[3] |
Sakai H, Stapelfeldt H, Constant E, Ivanov M Y, Matusek D R, Wright J S and Corkum P B 1998 Phys. Rev. Lett. 81 2217
|
[4] |
Seideman T, Ivanov M Y and Corkum P B 1995 Phys. Rev. Lett. 75 2819
|
[5] |
Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511
|
[6] |
Bandrauk A D and Lu H Z 2000 Phys. Rev. A 62 053406
|
[7] |
Banerjee S, Kumar G R and Mathur D 1999 Phys. Rev. A 60 R25
|
[8] |
Bryant W A, Sanderson J H, El-Zein A, Newell W R, Taday P F and Langley A J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 745
|
[9] |
Sabzyan H and Vafaee M 2005 Phys. Rev. A 71 063404
|
[10] |
Agostini P, Fabre F, Mainfray G, Petite G and Rahman N K 1979 Phys. Rev. Lett. 42 1127
|
[11] |
Roeterdink W G and Janssen M H M 2002 Phys. Chem. Chem. Phys. 4 601
|
[12] |
Wang Y M, Zhang S, Wei Z R and Zhang B 2009 Chem. Phys. Lett. 468 14
|
[13] |
Rosca-Pruna F, Springate E, Offerhaus H L, Krishnamurthy M, Farid N, Nicole C and Vrakking M J J 2001 J. Phys. B: At. Mol. Opt. Phys. 34 4919
|
[14] |
Beylerian C and Cornaggia C 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L259
|
[15] |
Cornaggia C, Schmidt M and Normand D 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L123
|
[16] |
Wright J S, DiLabio G A, Matusek D R, Corkum P B, Ivanov M Y, Ellert C, Buenker R J, Alekseyev A B and Hirsch G 1999 Phys. Rev. A 59 4512
|
[17] |
Tzallas P, Kosmidis C, Philis J G, Ledingham K W D, McCanny T, Singhal R P, Hankin S M, Taday P F and Langley A J 2001 Chem. Phys. Lett. 343 91
|
[18] |
Hasegawa H, Hishikawa A and Yamanouchi K 2001 Chem. Phys. Lett. 349 57
|
[19] |
Hishikawa A, Hasegawa H and Yamanouchi K 2002 Chem. Phys. Lett. 361 245
|
[20] |
Hishikawa A, Hasegawa H and Yamanouchi K 2004 Chem. Phys. Lett. 388 1
|
[21] |
Sun S Z, Yang Y, Zhang J, Wu H, Chen Y T, Zhang S A, Jia T Q, Wang Z G and Sun Z R 2013 Chem. Phys. Lett. 581 16
|
[22] |
Wu H, Yang Y, Sun S Z, Zhang J, Deng L, Zhang S A, Jia T Q, Wang Z G and Sun Z R 2014 Chem. Phys. Lett. 607 70
|
[23] |
Zhang J, Zhang S A, Yang Y, Sun S Z, Li J, Chen Y T, Jia T Q, Wang Z G, Kong F A and Sun Z R 2014 Phys. Rev. A 90 053428
|
[24] |
Constant E, Stapelfeldt H and Corkum P B 1996 Phys. Rev. Lett. 76 4140
|
[25] |
Bandrauk A D, Musaev D G and Morokuma K 1999 Phys. Rev. A 59 4309
|
[26] |
Wang C, Ding D, Okunishi M, Wang Z G, Liu X J, Prümper G and Ueda K 2010 Chem. Phys. Lett. 496 32
|
[27] |
Yang Y, Fan L L, Sun S Z, Zhang J, Chen Y T, Zhang S A, Jia T Q and Sun Z R 2011 J. Chem. Phys. 135 064303
|
[28] |
Wu C, Zhang G Q, Wu C Y, Yang Y D, Liu X R, Deng Y K, Liu H, Liu Y Q and Gong Q H 2012 Phys. Rev. A 85 063407
|
[29] |
Schmidt M, Normand D and Cornaggia C 1994 Phys. Rev. A 50 5037
|
[30] |
Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B and Gong Q H 2013 Phys. Rev. Lett. 110 103601
|
[31] |
Wu C Y, Wu C, Fan Y M, Xie X G, Wang P, Deng Y K, Liu Y Q and Gong Q H 2015 J. Chem. Phys. 142 124303
|
[32] |
Graham P, Ledingham K W D, Singhal R P, McCanny T, Hankin S M, Fang X, Smith D J, Kosmidis C, Tzallas P, Langley A J and Taday P F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 5557
|
[33] |
Banerjee S, Kumar G R and Mathur D 1999 Phys. Rev. A 60 R3369
|
[34] |
Guo C, Li M, Nibarger J P and Gibson G N 1998 Phys. Rev. A 58 R4271
|
[35] |
Wang Y M, Zhang S, Wei Z R and Zhang B 2008 J. Phys. Chem. A 112 3846
|
[36] |
Corrales M E, Gitzinger G, Vazquez J G, Loriot V, Nalda R and Banares L 2012 J. Phys. Chem. A 116 2669
|
[37] |
Posthumus J H, Giles A J, Thompson M R and Codling K 1996 J. Phys. B: At. Mol. Opt. Phys. 29 5811
|
[38] |
Iwamae A, Hishikawa A and Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223
|
[39] |
Hishikawa A, Iwamae A and Yamanouchi K 1999 Phys. Rev. Lett. 83 1127
|
[40] |
Hishikawa A, Iwamae A and Yamanouchi K 1999 J. Chem. Phys. 111 8871
|
[41] |
Iwasaki A, Hishikawa A and Yamanouchi K 2001 Chem. Phys. Lett. 346 379
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|