|
|
Single and double Auger decay of 4f-ionized mercury including cascade and direct processes |
Yu-Long Ma(马玉龙)1, Fu-Yang Zhou(周福阳)2, Zhen-Qi Liu(刘振旗)1, Yi-Zhi Qu(屈一至)1 |
1 College of Material Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract Single (SA) and double (DA) Auger decay including cascade and direct processes are investigated for Hg 4f-1 with multiconfiguration Dirac-Fock method and two-step approaches, i.e., knockout and shakeoff mechanisms. Due to the computational effort, only the major transitions are considered to describe the SA and DA decays for the Hg+ ions with complex electronic configurations. In order to estimate the Auger transition energies and amplitudes, the reference configuration sets producing the configuration state functions are carefully chosen for balancing electron correlations among the successive singly, doubly and triply ionized mercury. The Auger rates and electron spectra, DA probabilities as well as the populations of the final Hg3+ states are obtained. Our results well explain the recent experimental data about the 4f hole states of Hg[Palaudoux J et al., Phys. Rev. A 91 012513 (2015)], and could provide guidance for further studies on complex atoms. Particularly for the DA decay, the contributions of the direct processes, which are neglected in their calculations, are found to be important, accounting for as high as about 38% and 34% of the total DA decays for the 4f7/2-1 and 4f5/2-1, respectively.
|
Received: 05 March 2018
Revised: 03 April 2018
Accepted manuscript online:
|
PACS:
|
32.80.Hd
|
(Auger effect)
|
|
32.80.Zb
|
(Autoionization)
|
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2017YFA0402300),the National Natural Science Foundation of China (Grant Nos.11774344 and 11474033),and the Joint Foundation of the National Natural Science Foundation and the China Academy of Engineering Physics (Grant No.U1330117). |
Corresponding Authors:
Yi-Zhi Qu
E-mail: yzqu@ucas.ac.cn
|
Cite this article:
Yu-Long Ma(马玉龙), Fu-Yang Zhou(周福阳), Zhen-Qi Liu(刘振旗), Yi-Zhi Qu(屈一至) Single and double Auger decay of 4f-ionized mercury including cascade and direct processes 2018 Chin. Phys. B 27 063201
|
[1] |
Stolterfoht N, Havener C C, Phaneuf R A, Swenson J K, Shafroth S M and Meyer F W 1986 Phys. Rev. Lett. 57 74
|
[2] |
Viefhaus J, Cvejanović S, Langer B, Lischke T, Prumper G, Rolles D, Golovin A V, Grum-Grzhimailo A N, Kabachnik N M and Becker U 2004 Phys. Rev. Lett. 92 083001
|
[3] |
Penent F, Palaudoux J, Lablanquie P, Andric L, Feifel R and Eland J H D 2005 Phys. Rev. Lett. 95 083002
|
[4] |
Wang X L, Dong C Z, Xie L Y, Shi Y L, Saber I A and Zhou W D 2012 Chin. Phys. Lett. 29 103201
|
[5] |
Carlson T A and Krause M O 1965 Phys. Rev. Lett. 14 390
|
[6] |
Kanngießer B, Jainz M, Brünken S, Benten W, Gerth C, Godehusen K, Tiedtke K, van Kampen P, Tutay A, Zimmermann P, Demekhin V F and Kochur A G 2000 Phys. Rev. A 62 014702
|
[7] |
Brünken S, Gerth C, Kanngießer B, Luhmann T, Richter M and Zimmermann P 2002 Phys. Rev. A 65 042708
|
[8] |
Andersson E, Fritzsche S, Linusson P, Hedin L, Eland J H D, Karlsson L and Feifel R 2010 Phys. Rev. A 82 043418
|
[9] |
Palaudoux J, Lablanquie P, Andric L, Ito K, Shigemasa E, Eland J H D, Jonauskas V, Kučas S, Karazija R and Penent F 2010 Phys. Rev. A 82 043419
|
[10] |
Suzuki I H, Hikosaka Y, Shigemasa E, Lablanquie P, Penent F, Soejima K, Nakano M, Kouchi N and Ito K 2011 J. Phys. B:At. Mol. Opt. Phys. 44 075003
|
[11] |
Zeng J L, Liu P F, Xiang W J and Yuan J M 2013 Phys. Rev. A 87 033419
|
[12] |
Hikosaka Y, Lablanquie P, Penent F, Selles P, Kaneyasu T, Shigemasa E, Eland J H D and Ito K 2009 Phys. Rev. A 80 031404(R)
|
[13] |
Hikosaka Y, Lablanquie P, Penent F, Selles P, Shigemasa E and Ito K 2014 Phys. Rev. A 89 023410
|
[14] |
Hikosaka Y, Kaneyasu T, Lablanquie P, Penent F, Shigemasa E and Ito K 2015 Phys. Rev. A 92 033413
|
[15] |
Viefhaus J, Grum-Grzhimailo A N, Kabachnik N M and Becker U 2004 J. Electron Spectrosc. Relat. Phenom. 141 121
|
[16] |
Müller A, Borovik A, Jr, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J and Schippers S 2015 Phys. Rev. Lett. 114 013002
|
[17] |
Zhou F Y, Ma Y L and Qu Y Z 2016 Phys. Rev. A 93 060501(R)
|
[18] |
Palaudoux J, Huttula S M, Huttula M, Penent F, Andric L and Lablanquie P 2015 Phys. Rev. A 91 012513
|
[19] |
Hindi M M, Zhu L, Avci R, Miočinović P M, Kozub R L and Lapeyre G J 1996 Phys. Rev. A 53 R3716
|
[20] |
Hu H W and Dong C Z 2006 Acta Phys. Sin. 55 6326 (in Chinese)
|
[21] |
Amusia M Y, Lee I S and Kilin V A 1992 Phys. Rev. A 45 4576
|
[22] |
Andersson J, Beerwerth R, Roos A H, Squibb R J, Singh R, Zagorodskikh S, Talaee O, Koulentianos D, Eland J H D, Fritzsche S and Feifel R 2017 Phys. Rev. A 96 012505
|
[23] |
Huttula S M, Soronen J, Huttula M, Penent F, Palaudoux J, Andric L and Lablanquie P 2015 J. Phys. B:At. Mol. Opt. Phys. 48 115001
|
[24] |
Huttula M, Huttula S M, Fritzsche S, Lablanquie P, Penent F, Palaudoux J and Andric L 2014 Phys. Rev. A 89 013411
|
[25] |
Huttula M, Huttula S M, Lablanquie P, Palaudoux J, Andric L, Eland J H D and Penent F 2011 Phys. Rev. A 83 032510
|
[26] |
Eland J H D, Feifel R and Edvardsson D 2004 J. Phys. Chem. A 108 9721
|
[27] |
Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York:Springer)
|
[28] |
Jönsson P, He X, Froese Fischer C and Grant I P 2007 Comput. Phys. Commun. 177 597
|
[29] |
Fritzsche S 2012 Comput. Phys. Commun. 183 1525
|
[30] |
Stock S, Beerwerth R and Fritzsche S 2017 Phys. Rev. A 95 053407
|
[31] |
Ma Y L, Zhou F Y, Liu L and Qu Y Z 2017 Phys. Rev. A 96 042504
|
[32] |
Gu M F 2008 Can. J. Phys. 86 675
|
[33] |
Jonauskas V, Kučas S and Karazija R 2011 Phys. Rev. A 84 053415
|
[34] |
Huttula S M, Heinäsmäki S, Aksela H, Kukk E, Huttula M and Aksela S 2003 Phys. Rev. A 67 052703
|
[35] |
Zhou F Y, Qu Y Z, Li J G and Wang J G 2015 Phys. Rev. A 92 052505
|
[36] |
Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley:University of California Press)
|
[37] |
Ding X B and Dong C Z 2012 Chin. Phys. Lett. 29 063201
|
[38] |
Andersson J, Beerwerth R, Linusson P, Eland J H D, Zhaunerchyk V, Fritzsche S and Feifel R 2015 Phys. Rev. A 92 023414
|
[39] |
Beerwerth R and Fritzsche S 2017 Eur. Phys. J. D 71 253
|
[40] |
Lohmann B 1993 J. Phys. B:At. Mol. Opt. Phys. 26 1623
|
[41] |
Aksela H, Aksela S, Jen J S and Thomas T D 1977 Phys. Rev. A 15 985
|
[42] |
Svensson S, Mårtensson N, Basilier E, Å P, Gelius U and Siegbahn K 1976 J. Electron Spectrosc. Relat. Phenom. 9 51
|
[43] |
Patanen M, Urpelainen S, Kantia T, Heinäsmäki S, Aksela S and Aksela H 2011 Phys. Rev. A 83 053408
|
[44] |
Kramida A, Ralchenko Y, Reader J and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.5.1),[online]. Available:https://physics.nist.gov/asd.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|