Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060306    DOI: 10.1088/1674-1056/27/6/060306
GENERAL Prev   Next  

Electronic and magnetic properties of semihydrogenated, fully hydrogenated monolayer and bilayer MoN2 sheets

Yan-Chao She(佘彦超)1, Zhao Wei(魏昭)2, Kai-Wu Luo(罗开武)1, Yong Li(李勇)1, Yun Zhang(张云)2, Wei-Xi Zhang(张蔚曦)1
1 Department of Physics and Electronic Engineering, Tongren University, Tongren 554300, China;
2 Department of Physics and Information Technology, Baoji University of Arts and Sciences, Baoji 721016, China
Abstract  Based on density functional theory, we investigate the electronic and magnetic properties of semi-hydrogenated, fully hydrogenated monolayer and bilayer MoN2. We find that the AB stacking bilayer MoN2 exhibits ferromagnetic coupling of intralayer and antiferromagnetic coupling of interlayer, however, the ground states of the semi-hydrogenated, fully hydrogenated monolayer and AA stcaking bilayer MoN2 are nonmagnetic. The fully hydrogenated system has a quasi-direct band-gap of 2.5 eV, which has potential applications in light-emitting diode and photovoltaics. The AB stacking bilayer MoN2 shows the Dirac cone at K point in BZ around Fermi energy. Furthermore, the interlayer of the AB stacking bilayer MoN2 is subjected to a weak van der Waals force, while the interlayer of the AA stacking forms N-N covalent bond.
Keywords:  semi-hydrogenated MoN2      AA stacking      first-principles      two-dimensional materials  
Received:  19 December 2017      Revised:  21 March 2018      Accepted manuscript online: 
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  62.23.Kn (Nanosheets)  
  68.65.Ac (Multilayers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11747168,11604246,and 11704007),the Natural Science Foundation of Guizhou Provincial Education Department,China (Grant Nos.KY[2015]384,KY[2015]446,and KY[2017]053),the Natural Science Foundation of Guizhou Provincial Science and Technology Agency (Grant Nos.LH[2015]7232 and LH[2015]7228),and the Science Research Foundation of Tongren University,China (Grant No.trxyDH1529).
Corresponding Authors:  Yun Zhang, Wei-Xi Zhang     E-mail:  Zhangyun_xtu@163.com;zhangwwxx@sina.com

Cite this article: 

Yan-Chao She(佘彦超), Zhao Wei(魏昭), Kai-Wu Luo(罗开武), Yong Li(李勇), Yun Zhang(张云), Wei-Xi Zhang(张蔚曦) Electronic and magnetic properties of semihydrogenated, fully hydrogenated monolayer and bilayer MoN2 sheets 2018 Chin. Phys. B 27 060306

[1] Novoselov K S, Geim A K and Morozov S V 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, et al., 2005 Nature 438 197
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Morozov S V, Novoselov K S, Katsnelson M I, et al. 2008 Phys. Rev. Lett. 100 016602
[5] Slonczewski J C and Weiss P R 1958 Phys. Rev. 109 272
[6] Okada S and Oshiyama A 2001 Phys. Rev. Lett. 87 146803
[7] Maiti U N, Lee W J, Lee J M, et al. 2014 Adv. Mater. 26 40
[8] Wang S M, Ge H, Sun S L, et al. J. Am. Chem. Soc. 137 4815
[9] Radisavljevic B, Radenovic A, Brivio J, et al. 2011 Nat. Nanotechnol. 6 147
[10] Zhou J, Wu M M, Zhou X, et al. 2009 Appl. Phys. Lett. 95 103108
[11] Xu B, Yin J, Xia Y D, et al. 2010 Appl. Phys. Lett. 96 143111
[12] Zhou J, Wang Q, Sun Q, et al. 2010 Phys. Rev. B 81 085442
[13] Li P, Cao J X and Guo Z X 2016 J. Mater. Chem. C 4 1736
[14] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[15] Elias D C, Nair R R, Mohiuddin T M G, et al. 2009 Science 323 610
[16] Zhou J, Wang Q and Sun Q 2009 Nano Lett. 9 3867
[17] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[18] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Dion M, Rydberg H, Schroder E, et al. 2004 Phys. Rev. Lett. 92 246401
[21] Thonhauser T, Cooper V R, Li S, et al. 2007 Phys. Rev. B 76 125112
[22] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Wu F, Huang C X, Wu H P, et al. 2015 Nano Lett. 15 8277
[26] Wang Y, Wang S S, LuY, et al. 2016 Nano Lett. 16 4576
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!