Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054208    DOI: 10.1088/1674-1056/27/5/054208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives

Tong-xing Jin(金桐兴)1, Jun-yi Yang(杨俊义)1, Yu Fang(方宇)2, Yan-bing Han(韩艳兵)3, Ying-lin Song(宋瑛林)1,3
1 College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China;
2 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China;
3 Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  Two dimethylamino-carbaldehyde derivatives with different π-bridge lengths were prepared, and their transient optical properties and photophysical mechanisms were investigated by transient absorption spectroscopy and Z-scan measurements. Owing to the difference in molecular structures, the two compounds exhibit different populations of locally excited states and, therefore, they also produce different transient absorption spectra. After photoexcitation, both molecular materials exhibit a wide excited state absorption band from 450 nm to 1000 nm. Meanwhile, the excited state lifetimes are dramatically different, 2 ns and 100 ps, for the two molecules. A figure of merit greater than 2 at the wavelength of 1000 nm is obtained. The results show that modulating the population of the locally excited states in this type of molecule can be a promising approach for obtaining optical switching and solar cell materials.
Keywords:  nonlinear optics      transient absorption spectra      dimethylamino-carbaldehyde derivatives  
Received:  28 September 2017      Revised:  30 January 2018      Accepted manuscript online: 
PACS:  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  78.47.jb (Transient absorption)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.U1630103 and 11704273),Natural Science Foundation of Jiangsu Province,China (Grant No.BK20170375),and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China (Grant No.17KJB140021).
Corresponding Authors:  Ying-lin Song     E-mail:  ylsong@hit.edu.cn

Cite this article: 

Tong-xing Jin(金桐兴), Jun-yi Yang(杨俊义), Yu Fang(方宇), Yan-bing Han(韩艳兵), Ying-lin Song(宋瑛林) Modulation and mechanism of ultrafast transient spectroscopy based on dimethylamino-carbaldehyde derivatives 2018 Chin. Phys. B 27 054208

[13] Polli D, Antognazza M R, Brida D, Lanzani G, Cerullo G and De Silvestri S 2008 Chem. Phys. 350 45
[1] Ehrlich J E, Wu X L, Lee I Y, Hu Z Y, Röckel H, Marder S R and Perry J W 1997 Opt. Lett. 22 1843
[14] Zewail A H 2000 J. Phys. Chem. A 104 5660
[2] He G S, Tan L S, Zheng Q and Prasad P N 2008 Chem. Rev. 108 1245
[15] Feng W K, Feng Y Y, Wang S F, Feng W, Yi W H Y and Gong Q H 2010 Chin. Phys. B 19 113401
[3] Almosawe A J and Saadon H L 2013 Chin. Opt. Lett. 11 041902
[16] Lange C, Köster N S, Chatterjee S, Sigg H, Chrastina D, Isella G, von Känel H, Schäfer M, Kira M and Koch S W 2009 Phys. Rev. B 79 201306
[4] Si J and Hirao K 2007 Appl. Phys. Lett. 91 091105
[17] Tamaki Y, Furube A, Murai M, Hara K, Katoh R and Tachiya M 2007 Phys. Chem. Chem. Phys. 9 1453
[5] Tan W, Liu H, Si J and Hou X 2008 Appl. Phys. Lett. 93 051109
[18] Ruckebusch C, Sliwa M, Pernot P, De Juan A and Tauler R 2012 J. Photochem. Photobiol. C 13 1
[6] Nguyen V, Si J, Yan L and Hou X 2015 Carbon 95 659
[19] Zhou F, Shao J, Yang Y, Zhao J, Guo H, Li X, Ji S, Zhang Z and Zhang Z 2011 Eur. J. Org. Chem. 2011 4773
[7] Staub K, Levina G A, Barlow S, Kowalczyk T C, Lackritz H S, Barzoukas M, Fort A and Marder S R 2003 J. Mater. Chem. 13 825
[20] Haidekker M A, Brady T P, Lichlyter D and Theodorakis E A 2005 Bioorg. Chem. 33 415
[8] Huang T H, Yang D, Kang Z H, Miao E L, Lu R, Zhou H P, Wang F, Wang G W, Cheng P F, Wang Y H and Zhang H Z 2013 Opt. Mater. 35 467
[21] Haidekker M A and Theodorakis E A 2007 Org. Biomol. Chem. 5 1669
[9] Achelle S, Barsella A, Caro B and Robin-le Guen F 2015 RSC Adv. 5 39218
[22] Stsiapura V I, Maskevich A A, Kuzmitsky V A, Uversky V N, Kuznetsova I M and Turoverov K K 2008 J. Phys. Chem. B 112 15893
[10] Reinhardt B A, Brott L L, Clarson S J, Dillard A G, Bhatt J C, Kannan R, Yuan L X, He G S and Prasad P N 1998 Chem. Mater. 10 1863
[23] Saha S K, Purkayastha P, Das A B and Dhara S 2008 Photochem. Photobiol A:Chem. 199 179
[11] Belfield K D, Hagan, D J, Van Stryland E W, Schafer K J and Negres R A 1999 Org. Lett. 1 1575
[24] Hwang Y J and Shin D M 2007 Mol. Cryst. Liq. Cryst. 472 25
[12] Antonov L, Kamada K, Ohta K and Kamounah F S 2003 Phys. Chem. Chem. Phys. 5 1193
[25] Klikar M, Bureš F, Pytela O, Mikysek T, Padělková Z, Barsella A, Dorkenoo K and Achelle S 2013 New J. Chem. 37 4230
[13] Polli D, Antognazza M R, Brida D, Lanzani G, Cerullo G and De Silvestri S 2008 Chem. Phys. 350 45
[26] Wu X, Xiao J, Sun R, Jin T, Yang J, Shi G, Wang Y, Zhang X and Song Y 2017 Adv. Opt. Mater. 5 1600712
[14] Zewail A H 2000 J. Phys. Chem. A 104 5660
[27] Albinsson B, Eng M P, Pettersson K and Winters M U 2007 Phys. Chem. Chem. Phys. 9 5847
[15] Feng W K, Feng Y Y, Wang S F, Feng W, Yi W H Y and Gong Q H 2010 Chin. Phys. B 19 113401
[28] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R and Nakatsuji H 2010 Gaussian development version. Revision h, 1
[16] Lange C, Köster N S, Chatterjee S, Sigg H, Chrastina D, Isella G, von Känel H, Schäfer M, Kira M and Koch S W 2009 Phys. Rev. B 79 201306
[29] Hagberg D P, Marinado T, Karlsson K M, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A and Sun L 2007 J. Org. Chem. 72 9550
[17] Tamaki Y, Furube A, Murai M, Hara K, Katoh R and Tachiya M 2007 Phys. Chem. Chem. Phys. 9 1453
[30] Ajayaghosh A 2003 Chem. Soc. Rev. 32 181
[18] Ruckebusch C, Sliwa M, Pernot P, De Juan A and Tauler R 2012 J. Photochem. Photobiol. C 13 1
[31] Xia T, Dogariu A, Mansour K, Hagan D J, Said A A, Van Stryland E W and Shi S 1998 JOSA B 15 1497
[19] Zhou F, Shao J, Yang Y, Zhao J, Guo H, Li X, Ji S, Zhang Z and Zhang Z 2011 Eur. J. Org. Chem. 2011 4773
[32] Ehlers F, Wild D A, Lenzer T and Oum K 2007 J. Phys. Chem. A 111 2257
[20] Haidekker M A, Brady T P, Lichlyter D and Theodorakis E A 2005 Bioorg. Chem. 33 415
[33] Liu X, Osgood R M, Vlasov Y A and Green W M 2010 Nat. Photon. 4 557
[21] Haidekker M A and Theodorakis E A 2007 Org. Biomol. Chem. 5 1669
[22] Stsiapura V I, Maskevich A A, Kuzmitsky V A, Uversky V N, Kuznetsova I M and Turoverov K K 2008 J. Phys. Chem. B 112 15893
[23] Saha S K, Purkayastha P, Das A B and Dhara S 2008 Photochem. Photobiol A:Chem. 199 179
[24] Hwang Y J and Shin D M 2007 Mol. Cryst. Liq. Cryst. 472 25
[25] Klikar M, Bureš F, Pytela O, Mikysek T, Padělková Z, Barsella A, Dorkenoo K and Achelle S 2013 New J. Chem. 37 4230
[26] Wu X, Xiao J, Sun R, Jin T, Yang J, Shi G, Wang Y, Zhang X and Song Y 2017 Adv. Opt. Mater. 5 1600712
[27] Albinsson B, Eng M P, Pettersson K and Winters M U 2007 Phys. Chem. Chem. Phys. 9 5847
[28] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R and Nakatsuji H 2010 Gaussian development version. Revision h, 1
[29] Hagberg D P, Marinado T, Karlsson K M, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A and Sun L 2007 J. Org. Chem. 72 9550
[30] Ajayaghosh A 2003 Chem. Soc. Rev. 32 181
[31] Xia T, Dogariu A, Mansour K, Hagan D J, Said A A, Van Stryland E W and Shi S 1998 JOSA B 15 1497
[32] Ehlers F, Wild D A, Lenzer T and Oum K 2007 J. Phys. Chem. A 111 2257
[33] Liu X, Osgood R M, Vlasov Y A and Green W M 2010 Nat. Photon. 4 557
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[6] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[7] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[8] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[9] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[10] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[11] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[14] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[15] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
No Suggested Reading articles found!