Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047501    DOI: 10.1088/1674-1056/27/4/047501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique

Rui Li(李锐)1,2, Yao Liu(刘瑶)1,2, Shu-Lan Zuo(左淑兰)1,2, Tong-Yun Zhao(赵同云)1,2, Feng-Xia Hu(胡凤霞)1,2, Ji-Rong Sun(孙继荣)1,2, Bao-Gen Shen(沈保根)1,2
1. State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Data-driven technique is a powerful and efficient tool for guiding materials design, which could supply as an alternative to trial-and-error experiments. In order to accelerate composition design for low-cost rare-earth permanent magnets, an approach using composition to estimate coercivity (Hcj) and maximum magnetic energy product ((BH)max) via machine learning has been applied to (PrNd-La-Ce)2Fe14B melt-spun magnets. A set of machine learning algorithms are employed to build property prediction models, in which the algorithm of Gradient Boosted Regression Trees is the best for predicting both Hcj and (BH)max, with high accuracies of R2=0.88 and 0.89, respectively. Using the best models, predicted datasets of Hcj or (BH)max in high-dimensional composition space can be constructed. Exploring these virtual datasets could provide efficient guidance for materials design, and facilitate the composition optimization of 2:14:1 structure melt-spun magnets. Combined with magnets' cost performance, the candidate cost-effective magnets with targeted properties can also be accurately and rapidly identified. Such data analytics, which involves property prediction and composition design, is of great time-saving and economical significance for the development and application of LaCe-containing melt-spun magnets.

Keywords:  permanent magnet      materials design      machine learning      property prediction  
Received:  14 January 2018      Revised:  27 February 2018      Accepted manuscript online: 
PACS:  75.47.Np (Metals and alloys)  
  75.50.Ww (Permanent magnets)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant No. 51590880), the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05), and the National Key Research and Development Program of China (Grant No. 2016YFB0700903).

Corresponding Authors:  Bao-Gen Shen     E-mail:  shenbg@iphy.ac.cn

Cite this article: 

Rui Li(李锐), Yao Liu(刘瑶), Shu-Lan Zuo(左淑兰), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根) Composition design for (PrNd-La–Ce)2Fe14B melt-spun magnets by machine learning technique 2018 Chin. Phys. B 27 047501

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Pathak A K, Khan M, Gschneidner K A, McCallum R W, Zhou L, Sun K, Kramer M J and Pecharsky V K 2016 Acta Mter. 103 211
[4] Pathak A K, Khan M, Gschneidner Jr K A, McCallum R W, Zhou L, Sun K, Dennis K W, Zhou C, Pinkerton F E, Kramer M J and Pecharsky V K 2015 Adv. Mater. 27 2663
[5] Zuo W L, Zuo S L, Li R, Zhao T Y, Hu F X, Sun J R, Zhang X F, Liu J P and Shen B G 2017 J. Alloys Compd. 695 1786
[6] Li Z B, Shen B G, Zhang M, Hu F X and Sun J R 2015 J. Alloys Compd. 628 325
[7] Herbst J F 1991 Rev. Mod. Phys. 63 819
[8] Nosengo N 2016 Nature 533 22
[9] Agrawal A and Choudhary A 2016 APL Mater. 4 053208
[10] Agrawal A, Deshpande P D, Cecen A, Basavarsu G P, Choudhary A N and Kalidindi S R 2014 Interg. Mater. Manuf. Innov. 3 8
[11] Sendek A D, Yang Q, Cubuk E D, Duerloo K-A N, Cui Y and Reed E J 2017 Energ. Environ. Sci. 10 306
[12] Xue D, Balachandran P V, Hogden J, Theiler J, Xue D and Lookman T 2016 Nat. Commun. 7 11241
[13] Meredig B, Agrawal A, Kirklin S, Saal J E, Doak J W, Thompson A, Zhang K, Choudhary A and Wolverton C 2014 Phys. Rev. B 89 094104
[14] Kaminski B, Jakubczyk M and Szufel P 2018 Cent. Eur. J. Oper. Res. 26 135
[15] Smola A J and Scholkopf B 2004 Stat. Comput. 14 199
[16] Friedman J H 2001 Ann. Stat. 29 1189
[17] Sun Y T, Bai H Y, Li M Z and Wang W H 2017 J. Phys. Chem. Lett. 8 3434
[18] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay E 2011 J. Mach. Learn. Res. 12 2825
[19] Li R, Shang R X, Xiong J F, Liu D, Kuang H, Zuo W L, Zhao T Y, Sun J R and Shen B G 2017 AIP Adv. 7 056207
[20] Rodgers J L and Nicewander W A 1988 Am. Stat. 42 59
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[5] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[6] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[7] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[8] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[9] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[10] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[11] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[12] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[13] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[14] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[15] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
No Suggested Reading articles found!