Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 044101    DOI: 10.1088/1674-1056/27/4/044101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Design of scale model of plate-shaped absorber in a wide frequency range

Li-Ming Yuan(袁黎明)1, Yong-Gang Xu(许勇刚)1, Wei Gao(高伟)1, Fei Dai(戴飞)1, Qi-Lin Wu(吴琪琳)2
1. Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438, China;
2. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
Abstract  In order to design the scale model in a wide frequency range, a method based on the reflective loss is proposed according to the high-frequency approximation algorithm, and an example of designing the scale model of a plate-shaped absorber is given in this paper. In the example, the frequency of the full-size measurement ranges from 2.0 GHz to 2.4 GHz, the thickness of the full-size absorber is 1 mm and the scale ratio is 1/5. A two-layer scale absorber is obtained by the proposed method. The thickness values of the bottom and top layer are 0.4 mm and 0.5 mm, respectively. Furthermore, the scattering properties of a plate model and an SLICY model are studied by FEKO to verify the effectiveness of the designed scale absorber. Compared with the corresponding values from the theoretical scale model, the average values of the absolute deviations in 10 GHz~12 GHz are 0.53 dBm2, 0.65 dBm2, 0.76 dBm2 for the plate model and 0.20 dBm2, 0.95 dBm2, 0.77 dBm2 for the SLICY model while the incident angles are 0°, 30°, and 60°, respectively. These deviations fall within the Radar cross section (RCS) measurement tolerance. Thus, the work in this paper has important theoretical and practical significance.
Keywords:  scale model      plate-shaped absorber      wide frequency range      RCS  
Received:  18 October 2017      Revised:  07 December 2017      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  81.70.Ex (Nondestructive testing: electromagnetic testing, eddy-current testing)  
  81.05.Qk (Reinforced polymers and polymer-based composites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61601299 and 11404213), the Shanghai Municipal Science and Technology Commission, China (Grant Nos. 17210730900 and 15ZR1439600), and the Defense Industrial Technology, China (Grant No. B2120132001).
Corresponding Authors:  Li-Ming Yuan     E-mail:  lming_y@163.com

Cite this article: 

Li-Ming Yuan(袁黎明), Yong-Gang Xu(许勇刚), Wei Gao(高伟), Fei Dai(戴飞), Qi-Lin Wu(吴琪琳) Design of scale model of plate-shaped absorber in a wide frequency range 2018 Chin. Phys. B 27 044101

[1] Bird D 1994 Radar Conference, 1994, Record of the 1994 IEEE National, March 29-31, 1994, Atlanta, GA, USA, p. 74
[2] White M O 1998 Electron. & Commun. Engin. J. 10 169
[3] Zhao Y, Zhang M and Chen H 2012 IEEE Trans. Anten. Propag. 60 5890
[4] Hu C F, Zhou Z, Li N J and Zhang K 2014 J. Syst. Engin. Electron. 25 588
[5] Stratton J 1941 Electromagnetic Theory (New York:McGrow-Hill)
[6] Sinclair G 1948 Proc. Inst. Radio Eng. 36 1364
[7] De Adana F S, Gonzalez I, Gutierrez O and Catedra M F 2003 IEE Proceedings-Radar, Sonar and Navigation 150 375
[8] Susetio A, Oki T and Morishita H 2015 Antennas and Propagation (APCAP), 2015 IEEE 4th Asia-Pacific Conference, June 30-July 3, 2015, Kuta, Indonesia, p. 568
[9] Jacobs B and Baker D 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), September 2-7, 2012, Cape Town, South Africa, p. 1001
[10] Gorji A B, Janalizadeh R C and Zakeri B 2013 Proceedings of 2013 URSI International Symposium on Electromagnetic Theory (EMTS), May 20-24, 2013, Hiroshima, Japan, p. 1066
[11] Wang X B, He X Y, Wu Y J, Dai F and Li L 2013 Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing, August 20-23, 2013, Beijing, China, p. 1587
[12] Liu T, Zhou P H, Liang D F and Deng L J 2012 Chin. Phys. B 21 50302
[13] Mano J F 1998 J. Phys. D:Appl. Phys. 31 2898
[14] Lagarkov A N and Rozanov K N 2009 J. Magn. Magn. Mater. 321 2082
[15] Lee J S, Song T L, Du J K and Yook J G 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) 2013, July 7-13, 2013, Orlando, FL, USA, p. 606
[16] Yuan L M, Wang B, Gao W, Xu Y G, Wang X B and Wu Q L 2017 Results in Physics 7 1698
[17] Kim J W and Kim S S 2010 Materials & Design 31 1547
[18] McLachlan D S 1986 J. Phys. C:Solid State Phys. 19 1339
[19] Chen P, Wu R X, Zhao T, Yang F and Xiao J Q 2005 J. Phys. D:Appl. Phys. 38 2302
[1] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[2] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[3] A novel polarization converter based on the band-stop frequency selective surface
Kun Liao(廖昆), Shining Sun(孙世宁), Xinyuan Zheng(郑昕原), Xianxian Shao(邵纤纤), Xiangkun Kong(孔祥鲲), and Shaobin Liu(刘少斌). Chin. Phys. B, 2022, 31(2): 024211.
[4] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[5] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
[6] Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xingyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), and Yuedong Meng(孟月东). Chin. Phys. B, 2020, 29(12): 125201.
[7] Design of multi-band metasurface antenna array with low RCS performance
Si-Ming Wang(王思铭), Jun Gao(高军), Xiang-Yu Cao(曹祥玉), Yue-Jun Zheng(郑月军), Tong Li(李桐), Jun-Xiang Lan(兰俊祥), Liao-Ri Ji-Di(吉地辽日). Chin. Phys. B, 2018, 27(10): 104102.
[8] A damping boundary condition for atomistic-continuum coupling
Jie Zhang(张杰), Kiet Tieu, Guillaume Michal, Hongtao Zhu(朱洪涛), Liang Zhang(张亮), Lihong Su(苏利红), Guanyu Deng(邓关宇), Hui Wang(王辉). Chin. Phys. B, 2017, 26(6): 068702.
[9] Electromagnetic backscattering from one-dimensional drifting fractal sea surface II:Electromagnetic backscattering model
Tao Xie(谢涛), William Perrie, Shang-Zhuo Zhao(赵尚卓), He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(7): 074102.
[10] Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model
Tao Xie(谢涛), Shang-Zhuo Zhao(赵尚卓), William Perrie, He Fang(方贺), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2016, 25(6): 064101.
[11] A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids
Li Feng-Chen (李凤臣), Wang Lu (王璐), Cai Wei-Hua (蔡伟华). Chin. Phys. B, 2015, 24(7): 074701.
[12] Intrinsic flux noise level of an rf SQUID involving two Josephson junctions connected in series
Mao Bo (毛博), Dai Yuan-Dong (戴远东), Wang Fu-Ren (王福仁). Chin. Phys. B, 2005, 14(2): 301-305.
No Suggested Reading articles found!