|
|
Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations |
Zai-Dong Li(李再东)1,2, Cong-Zhe Huo(霍丛哲)1, Qiu-Yan Li(李秋艳)1, Peng-Bin He(贺鹏斌)3, Tian-Fu Xu(徐天赋)4 |
1. Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China; 2. Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China; 3. School of Physics and Electronics, Hunan University, Changsha 410082, China; 4. Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract By means of the modified Darboux transformation we obtain some types of rogue waves in two-coupled nonlinear Schrödinger equations. Our results show that the two components admits the symmetry and asymmetry rogue wave solutions, which arises from the joint action of self-phase, cross-phase modulation, and coherent coupling term. We also obtain the analytical transformation from the initial seed solution to unique rogue waves with the bountiful pair structure. In a special case, the asymmetry rogue wave can own the spatial and temporal symmetry gradually, which is controlled by one parameter. It is worth pointing out that the rogue wave of two components can share the temporal inversion symmetry.
|
Received: 11 November 2017
Revised: 02 January 2018
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304270 and 61774001), the Key Project of Scientific and Technological Research of Hebei Province, China (Grant No. ZD2015133), the Construction Project of Graduate Demonstration Course of Hebei Province, China (Grant No. 94/220079), and the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ2045). |
Corresponding Authors:
Zai-Dong Li
E-mail: lizd@hebut.edu.cn
|
Cite this article:
Zai-Dong Li(李再东), Cong-Zhe Huo(霍丛哲), Qiu-Yan Li(李秋艳), Peng-Bin He(贺鹏斌), Tian-Fu Xu(徐天赋) Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations 2018 Chin. Phys. B 27 040505
|
[1] |
Kharif C and Pelinovsky E 2003 Eur. J. Mech. B 22 603
|
[2] |
Kharif C, Pelinovsky E and Slunyaev A 2009(Berlin, Heidelberg:Springer) 91
|
[3] |
Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
|
[4] |
Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790
|
[5] |
Ruderman M S 2010 Eur. Phys. J. Spec. Top. 185 57
|
[6] |
Moslem W M, Shukla P K and Eliasson B 2011 Euro. Phys. Lett. 96 25002
|
[7] |
Zeba I, Yahia M E, Shukla P K and Moslem W M 2012 Phys. Lett. A 376 2309
|
[8] |
Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 2962
|
[9] |
Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
|
[10] |
Chabchoub A, Hoffmann N P and Akhmediev N 2012 Geophys. J. Res. 117 100
|
[11] |
Chabchoub A, Hoffmann N, Onorato M and Akhmediev N 2012 Phys. Rev. X 2 4089
|
[12] |
Zhao F, Li Z D, Li Q Y, Wen L, Fu G S and Liu W M 2012 Ann. Phys. 327 2085
|
[13] |
Li Z D, Li Q Y, Xu T F and He P B 2016 Phys. Rev. E 94 042202
|
[14] |
Li Z D, Li Q Y and Liu W M 2017 J. Phys.:Conf. Ser. 827 012002
|
[15] |
Liu Y K and Li B 2017 Chin. Phys. Lett. 34 10202
|
[16] |
Qian C, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
|
[17] |
Voronovich V V, Shrira V I and Thomas G 2008 J. Fluid Mech. 604 263
|
[18] |
Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
|
[19] |
Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 Phys. Rev. E 81 046602
|
[20] |
Akhmediev N, Ankiewicz A and Sotocrespo J M 2009 Phys. Rev. E 80 026601
|
[21] |
He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2012 Phys. Rev. E 87 052914
|
[22] |
Wang L H, He J S, Xu H, Wang J and Porsezian K 2017 Phys. Rev. E 95 042217
|
[23] |
Wang L H, Yang C H, Wang J and He J S 2017 Phys. Lett. A 381 1714
|
[24] |
Bandelow U and Akhmediev N 2012 Phys. Rev. E 86 026606
|
[25] |
Chen S 2013 Phys. Rev. E 88 023202
|
[26] |
Peregrine D H 1983 Anziam. Journal 25 16
|
[27] |
Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
|
[28] |
Wang Y, Song L J, Li L and Malomed Boris A 2015 J. Opt. Soc. Am. B 32 2257
|
[29] |
Wang Y, Song L J and Li L 2016 Appl. Opt. 55 7241
|
[30] |
Liu B, Li L and Malomed B A 2017 Eur. Phys. D 71 140
|
[31] |
Ankiewicz A, Akhmediev N and Soto-Crespo J M 2010 Phys. Rev. E 82 026602
|
[32] |
He J S, Xu S W and Porsezian K 2012 J. Phys. Soc. Jpn. 81 4007
|
[33] |
He J S, Xu S W and Porsezian K 2012 Phys. Rev. E 86 066603
|
[34] |
Xu S W, Porsezian K, He J S and Cheng Y 2013 Phys. Rev. E 88 062925
|
[35] |
Xu S W, Porsezian K, He J S and Cheng Y 2016 Romanian Reports in Physics 68 316
|
[36] |
He J S, Xu S, Porsezian K, Cheng Y and Dinda P T 2016 Phys. Rev. E 93 062201
|
[37] |
Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
|
[38] |
Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
|
[39] |
Bludov Y V, Konotop V V, Akhmediev N 2010 Eur. Phys. J. Special Topics 185 169
|
[40] |
Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
|
[41] |
Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
|
[42] |
Zhang G Q, Yan Z Y and Wen X Y 2017 Proc. Math. Phys. Eng. Sci. 473 0243
|
[43] |
Yang G Y, Li L and Jia S 2012 Phys. Rev. E 85 046608
|
[44] |
Yang G Y, Wang Y, Qin Z Y, Malomed B A, Mihalache D and Li L 2014 Phys. Rev. E 90 062909
|
[45] |
Mikhailovet A V, Shabat A B and Yamilov R I 1987 Russ. Math. Surveys. 42 3
|
[46] |
Hietarinta J 1987 Phys. Rep. 147 87
|
[47] |
Zhao L C, Ling L M, Yang Z Y and Liu J 2015 Commun. Nonlinear Sci. Numer. Simulat. 23 21
|
[48] |
Ling L M, Feng B F and Zhu Z N 2018 Nonlinear Analysis:Real World Applications 40 185
|
[49] |
Dysthe K B and Pecseli H L 1977 Plasma Physics 19 931
|
[50] |
Chen Y Y, Wang Q and Shi J L 2004 Acta Phys. Sin. 53 1070
|
[51] |
Sakuma T and Kawanami Y 1984 Phys. Rev. B 29 880
|
[52] |
Malomed B A 1992 Phys Rev A 22 403
|
[53] |
Nakkeeran K 2001 J. Mod. Opt. 48 1863
|
[54] |
Ling L M and Zhao L C 2015 Phys. Rev. E 92 022924
|
[55] |
Sun W R, Tian B, Jiang Y and Zhen H L 2015 Phys. Rev. E 91 023205
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|