Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040505    DOI: 10.1088/1674-1056/27/4/040505
GENERAL Prev   Next  

Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations

Zai-Dong Li(李再东)1,2, Cong-Zhe Huo(霍丛哲)1, Qiu-Yan Li(李秋艳)1, Peng-Bin He(贺鹏斌)3, Tian-Fu Xu(徐天赋)4
1. Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China;
2. Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China;
3. School of Physics and Electronics, Hunan University, Changsha 410082, China;
4. Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  By means of the modified Darboux transformation we obtain some types of rogue waves in two-coupled nonlinear Schrödinger equations. Our results show that the two components admits the symmetry and asymmetry rogue wave solutions, which arises from the joint action of self-phase, cross-phase modulation, and coherent coupling term. We also obtain the analytical transformation from the initial seed solution to unique rogue waves with the bountiful pair structure. In a special case, the asymmetry rogue wave can own the spatial and temporal symmetry gradually, which is controlled by one parameter. It is worth pointing out that the rogue wave of two components can share the temporal inversion symmetry.
Keywords:  rogue wave      temporal inversion symmetry  
Received:  11 November 2017      Revised:  02 January 2018      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304270 and 61774001), the Key Project of Scientific and Technological Research of Hebei Province, China (Grant No. ZD2015133), the Construction Project of Graduate Demonstration Course of Hebei Province, China (Grant No. 94/220079), and the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ2045).
Corresponding Authors:  Zai-Dong Li     E-mail:  lizd@hebut.edu.cn

Cite this article: 

Zai-Dong Li(李再东), Cong-Zhe Huo(霍丛哲), Qiu-Yan Li(李秋艳), Peng-Bin He(贺鹏斌), Tian-Fu Xu(徐天赋) Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations 2018 Chin. Phys. B 27 040505

[1] Kharif C and Pelinovsky E 2003 Eur. J. Mech. B 22 603
[2] Kharif C, Pelinovsky E and Slunyaev A 2009(Berlin, Heidelberg:Springer) 91
[3] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[4] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N and Dudley J M 2010 Nat. Phys. 6 790
[5] Ruderman M S 2010 Eur. Phys. J. Spec. Top. 185 57
[6] Moslem W M, Shukla P K and Eliasson B 2011 Euro. Phys. Lett. 96 25002
[7] Zeba I, Yahia M E, Shukla P K and Moslem W M 2012 Phys. Lett. A 376 2309
[8] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 2962
[9] Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[10] Chabchoub A, Hoffmann N P and Akhmediev N 2012 Geophys. J. Res. 117 100
[11] Chabchoub A, Hoffmann N, Onorato M and Akhmediev N 2012 Phys. Rev. X 2 4089
[12] Zhao F, Li Z D, Li Q Y, Wen L, Fu G S and Liu W M 2012 Ann. Phys. 327 2085
[13] Li Z D, Li Q Y, Xu T F and He P B 2016 Phys. Rev. E 94 042202
[14] Li Z D, Li Q Y and Liu W M 2017 J. Phys.:Conf. Ser. 827 012002
[15] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 10202
[16] Qian C, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
[17] Voronovich V V, Shrira V I and Thomas G 2008 J. Fluid Mech. 604 263
[18] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[19] Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 Phys. Rev. E 81 046602
[20] Akhmediev N, Ankiewicz A and Sotocrespo J M 2009 Phys. Rev. E 80 026601
[21] He J S, Zhang H R, Wang L H, Porsezian K and Fokas A S 2012 Phys. Rev. E 87 052914
[22] Wang L H, He J S, Xu H, Wang J and Porsezian K 2017 Phys. Rev. E 95 042217
[23] Wang L H, Yang C H, Wang J and He J S 2017 Phys. Lett. A 381 1714
[24] Bandelow U and Akhmediev N 2012 Phys. Rev. E 86 026606
[25] Chen S 2013 Phys. Rev. E 88 023202
[26] Peregrine D H 1983 Anziam. Journal 25 16
[27] Chabchoub A, Hoffmann N P and Akhmediev N 2011 Phys. Rev. Lett. 106 204502
[28] Wang Y, Song L J, Li L and Malomed Boris A 2015 J. Opt. Soc. Am. B 32 2257
[29] Wang Y, Song L J and Li L 2016 Appl. Opt. 55 7241
[30] Liu B, Li L and Malomed B A 2017 Eur. Phys. D 71 140
[31] Ankiewicz A, Akhmediev N and Soto-Crespo J M 2010 Phys. Rev. E 82 026602
[32] He J S, Xu S W and Porsezian K 2012 J. Phys. Soc. Jpn. 81 4007
[33] He J S, Xu S W and Porsezian K 2012 Phys. Rev. E 86 066603
[34] Xu S W, Porsezian K, He J S and Cheng Y 2013 Phys. Rev. E 88 062925
[35] Xu S W, Porsezian K, He J S and Cheng Y 2016 Romanian Reports in Physics 68 316
[36] He J S, Xu S, Porsezian K, Cheng Y and Dinda P T 2016 Phys. Rev. E 93 062201
[37] Guo B L and Ling L M 2011 Chin. Phys. Lett. 28 110202
[38] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[39] Bludov Y V, Konotop V V, Akhmediev N 2010 Eur. Phys. J. Special Topics 185 169
[40] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[41] Baronio F, Conforti M, Degasperis A, Lombardo S, Onorato M and Wabnitz S 2014 Phys. Rev. Lett. 113 034101
[42] Zhang G Q, Yan Z Y and Wen X Y 2017 Proc. Math. Phys. Eng. Sci. 473 0243
[43] Yang G Y, Li L and Jia S 2012 Phys. Rev. E 85 046608
[44] Yang G Y, Wang Y, Qin Z Y, Malomed B A, Mihalache D and Li L 2014 Phys. Rev. E 90 062909
[45] Mikhailovet A V, Shabat A B and Yamilov R I 1987 Russ. Math. Surveys. 42 3
[46] Hietarinta J 1987 Phys. Rep. 147 87
[47] Zhao L C, Ling L M, Yang Z Y and Liu J 2015 Commun. Nonlinear Sci. Numer. Simulat. 23 21
[48] Ling L M, Feng B F and Zhu Z N 2018 Nonlinear Analysis:Real World Applications 40 185
[49] Dysthe K B and Pecseli H L 1977 Plasma Physics 19 931
[50] Chen Y Y, Wang Q and Shi J L 2004 Acta Phys. Sin. 53 1070
[51] Sakuma T and Kawanami Y 1984 Phys. Rev. B 29 880
[52] Malomed B A 1992 Phys Rev A 22 403
[53] Nakkeeran K 2001 J. Mod. Opt. 48 1863
[54] Ling L M and Zhao L C 2015 Phys. Rev. E 92 022924
[55] Sun W R, Tian B, Jiang Y and Zhen H L 2015 Phys. Rev. E 91 023205
[1] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[2] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[3] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[4] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[5] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[6] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[7] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[8] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[9] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[10] Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Yang-yang Wang(王洋洋), Peng-Bin He(贺鹏斌). Chin. Phys. B, 2019, 28(1): 010504.
[11] A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation
Panfeng Zheng(郑攀峰), Man Jia(贾曼). Chin. Phys. B, 2018, 27(12): 120201.
[12] Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma
M S Alam, M G Hafez, M R Talukder, M Hossain Ali. Chin. Phys. B, 2017, 26(9): 095203.
[13] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[14] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
[15] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
No Suggested Reading articles found!