Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 038701    DOI: 10.1088/1674-1056/27/3/038701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel knowledge-based potential for RNA 3D structure evaluation

Yi Yang(杨毅)1,2, Qi Gu(辜琦)2, Ben-Gong Zhang(张本龚)3, Ya-Zhou Shi(时亚洲)2,3, Zhi-Gang Shao(邵志刚)1
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou 510006, China;
2 Center for Theoretical Physics and Key Laboratory of Artificial Micro & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China;
3 Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430200, China
Abstract  

Ribonucleic acids (RNAs) play a vital role in biology, and knowledge of their three-dimensional (3D) structure is required to understand their biological functions. Recently structural prediction methods have been developed to address this issue, but a series of RNA 3D structures are generally predicted by most existing methods. Therefore, the evaluation of the predicted structures is generally indispensable. Although several methods have been proposed to assess RNA 3D structures, the existing methods are not precise enough. In this work, a new all-atom knowledge-based potential is developed for more accurately evaluating RNA 3D structures. The potential not only includes local and nonlocal interactions but also fully considers the specificity of each RNA by introducing a retraining mechanism. Based on extensive test sets generated from independent methods, the proposed potential correctly distinguished the native state and ranked near-native conformations to effectively select the best. Furthermore, the proposed potential precisely captured RNA structural features such as base-stacking and base-pairing. Comparisons with existing potential methods show that the proposed potential is very reliable and accurate in RNA 3D structure evaluation.

Keywords:  RNA      3D structure evaluation      knowledge-based potential  
Received:  18 October 2017      Revised:  05 December 2017      Accepted manuscript online: 
PACS:  87.14.gn (RNA)  
  87.15.bg (Tertiary structure)  
  87.10.Vg (Biological information)  
Fund: 

Project supported by the National Science Foundation of China (Grants Nos. 11605125, 11105054, 11274124, and 11401448).

Corresponding Authors:  Ya-Zhou Shi, Zhi-Gang Shao     E-mail:  yzshi@wtu.edu.cn;zgshao@scnu.edu.cn

Cite this article: 

Yi Yang(杨毅), Qi Gu(辜琦), Ben-Gong Zhang(张本龚), Ya-Zhou Shi(时亚洲), Zhi-Gang Shao(邵志刚) A novel knowledge-based potential for RNA 3D structure evaluation 2018 Chin. Phys. B 27 038701

[1] Guttman M and Rinn J L 2002 Nature 482 339
[2] Frank T D 2011 Phys. Lett. A 375 3851
[3] Gong S, Wang Y and Zhang W 2015 J. Chem. Phys. 143 045103
[4] Aviv T, Amborski A N, Zhao X S, Kwan J J, Johnson P E and Sicheri F 2006 J. Mol. Biol. 356 274
[5] Cruz JA, Blanchet MF, Boniecki M, Bujnicki JM, Chen S J and Cao S 2012 RNA 18 610
[6] Laing C and Schlick T 2011 Curr. Opin. Struc. Biol. 21 306
[7] Parisien M and Major F 2008 Nature 452 51
[8] Das R and Baker D 2007 Proc. Natl. Acad. Sci. U.S.A. 104 14664
[9] Sharma S, Ding F and Dokholyan NV 2008 Bioinf. 24 1951
[10] Zhou H and Skolnick J 2011 Biophys. J. 101 2043
[11] Cao S and Chen S J 2011 J. Phys. Chem. B 115 4216
[12] Zhao Y, Huang Y, Gong Z, Wang Y, Man J and Xiao Y 2012 Sci. Rep. 2 734
[13] Shi Y Z, Wu Y Y, Wang F H and Tan Z J 2014 Chin. Phys. B 23 078701
[14] Shi Y Z, Wang F H, Wu Y Y and Tan Z J 2014 J. Chem. Phys. 141 105102
[15] Tan Z J, Zhang W, Shi Y Z, and Wang F H 2015 Adv. Exp. Med. Biol. 827 143
[16] Kerpedjiev P, Höner Z S C and Hofacker I L 2015 RNA 21 1110
[17] Shi Y Z, Jin L, Wang F H, Zhu X L and Tan Z J 2015 Biophys. J. 109 2654
[18] Li J, Zhang J, Wang J, Li W and Wang W 2016 PLoS Comput. Biol. 12 e1005032
[19] Boniecki M J, Lach G, Dawson W K, Tomala K, Lukasz P and Soltysinski T 2016 Nucleic Acids Res. 44 e63
[20] Lorenz R, Wolfinger M T, Tanzer A and Hofacker I L 2016 Nat. Methods 103 86
[21] Wang J, Mao K, Zhao Y, Zeng C, Xiang J and Zhang Y 2017 Nucleic Acids Res. 45 11
[22] Shapiro B A, Yingling Y G, Kasprzak W and Bindewald E 2007 Curr. Opin. Struct. Biol. 17 157
[23] Kim D E, Chivian D and Baker D 2004 Nucleic Acids Res. 32 W526.
[24] Shen M and Sali A 2006 Protein Sci. 15 2507
[25] Singh H, Singh S and Raghava G P 2014 PLOS ONE 9 8
[26] Setny P, Bahadur R P and Zacharias M 2012 Bmc Bioinf. 13 228
[27] Pan X and Shen H B 2017 Bmc Bioinf. 18 136
[28] Jonikas M A, Radmer R J, Laederach A, Das R, Pearlman S, Herschlag D and Altman R B 2009 RNA 15 189
[29] Das R, Karanicolas J and Baker D 2010 Nat. Methods 7 291
[30] Capriotti E, Norambuena T, Marti-Renom M A and Melo F 2011 Bioinf. 27 1086
[31] Norambuena T, Cares J F, Capriotti E and Melo F 2013 Bioinf. 29 2649
[32] Bernauer J, Huang X, Sim A Y and Levitt M 2011 RNA 17 1066
[33] Wang J, Zhao Y, Zhu C and Xiao Y 2015 Nucleic Acids Res. 43 e63
[34] Zheng S, Robertson T A and Varani G 2007 FEBS J. 274 6378
[35] Holbrook SR 2008 Annu. Rev. Biophys. 37 445
[36] Reiter N J, Chan C W and Mondrag'on A 2011 Curr. Opin. Struct. Biol. 21 319
[37] Zhang C, Liu S, Zhou H and Zhou Y 2004 Biophys. J. 86 3349
[38] Gultyaev A P, van Batenburg F H and Pleij C W 1995 J. Mol. Biol. 250 37
[39] Schroeder R, Barta A and Semrad K 2004 Nat. Rev. Mol. Cell Bio. 5 908
[40] Fagegaltier D, Lescure A, Walczak R, Carbon P and Krol A 2000 Nucleic Acids Res. 28 2679
[41] Kao S C and Bobst A M 1985 Biochem. 24 5465
[42] Anfinsen CB 1973 Science 181 223
[43] Sippl MJ 1990 J. Mol. Biol. 213 859
[44] Altschul S F, Gish W, Miller W, Myers E W and Lipman D J 1990 J. Mol. Biol. 215 403
[45] Sali A and Blundell TL 1993 J. Mol. Biol. 234 779
[46] Huang E S, Subbiah S, Tsai J and Levitt M 1996 J. Mol. Biol. 257 716
[47] Hansmann U H and Okamoto Y 1999 Curr. Opin. Struct. Biol. 9 177
[48] Summa C M and Levitt M 2007 Proc. Natl. Acad. Sci. U.S.A. 104 3177
[49] Tsai J, Bonneau R, Morozov A V, Kuhlman B, Rohl C A and Baker D 2003 Proteins:Struct. Funct. Genet. 53 76
[50] Leonarski F, Trovato F, Tozzini V, Les A and Trylska J 2013 J. Chem. Theory Comput. 9 4874
[51] Amarasinghe G K, Guzman R N D, Turner R B and Summers M F 2000 J. Mol. Biol. 299 145
[52] Cabello V J, Winkler M E and Nikonowicz E P 2002 J. Mol. Biol. 319 1015
[53] Finger LD, Trantirek L, Johansson C and Feigon J 2003 Nucleic Acids Res. 31 6461
[54] Wang Y, Gong S, Wang Z and Zhang W 2016 J. Chem. Phys. 144 115101.
[55] Frappat L, Sorba P and Sciarrino A 1998 Phys. Lett. A 250 214
[56] Morgado C A, Svozil D, Turner D H and Šponer J 2012 Phys. Chem. Chem. Phys. 14 12580
[57] Yang H, Jossinet F, Leontis N, Chen L, Westbrook J and Berman H 2003 Nucleic Acids Res. 31 3450
[58] Deng H, Jia Y, Wei Y and Zhang Y 2012 Proteins:Struct. Funct. Bioinf. 80 2311
[59] Huang S Y and Zou X 2006 J. Comput. Chem. 27 1866
[60] Thomas P D and Dill K A 1996 J. Mol. Biol. 257 457
[61] Wang J and Xiao Y 2016 Phys. Rev. E 94 040401
[62] Zheng W M 2015 Chin. Phys. B 24 22
[63] Chang X X, Xu L F and Shi H L 2015 Chin. Phys. B. 24 128703
[64] Tan Z J and Chen S J 2011 Biophys. J. 101 176
[65] Tan Z J and Chen S J 2010 Biophys. J. 99 1565
[66] Bao L, Zhang X, Jin L and Tan Z J 2016 Chin. Phys. B 25 313
[67] Bao L, Zhang X, Shi Y Z, Wu Y Y and Tan Z J 2017 Biophys. J. 112 1094
[68] Zhang Z L, Wu Y Y, Xi K, Sang J P and Tan Z J 2017 Biophys. J. 113 517
[1] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[2] Force-constant-decayed anisotropic network model: An improved method for predicting RNA flexibility
Wei-Bu Wang(王韦卜), Xing-Yuan Li(李兴元), and Ji-Guo Su(苏计国). Chin. Phys. B, 2022, 31(6): 068704.
[3] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[4] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[5] RNAGCN: RNA tertiary structure assessment with a graph convolutional network
Chengwei Deng(邓成伟), Yunxin Tang(唐蕴芯), Jian Zhang(张建), Wenfei Li(李文飞), Jun Wang(王骏), and Wei Wang(王炜). Chin. Phys. B, 2022, 31(11): 118702.
[6] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[7] Enhancements of the Gaussian network model in describing nucleotide residue fluctuations for RNA
Wen-Jing Wang(王文静) and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(5): 058701.
[8] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[9] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[10] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[11] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[12] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[13] Statistical potentials for 3D structure evaluation: From proteins to RNAs
Ya-Lan Tan(谭雅岚), Chen-Jie Feng(封晨洁), Xunxun Wang(王勋勋), Wenbing Zhang(张文炳), and Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2021, 30(2): 028705.
[14] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[15] Topological Dirac surface states in ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4
Yunlong Li(李云龙), Chaozhi Huang(黄超之), Guohua Wang(王国华), Jiayuan Hu(胡佳元), Shaofeng Duan(段绍峰), Chenhang Xu(徐晨航), Qi Lu(卢琦), Qiang Jing(景强), Wentao Zhang(张文涛), and Dong Qian(钱冬). Chin. Phys. B, 2021, 30(12): 127901.
No Suggested Reading articles found!