Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037901    DOI: 10.1088/1674-1056/27/3/037901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermomechanical response of aluminum alloys under the combined action of tensile loading and laser irradiations

Mohsan Jelani1, Zewen Li(李泽文)2, Zhonghua Shen(沈中华)1,2, Maryam Sardar1
1 School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Advanced Launching Co-Innovation Centre, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  This study reports the investigation of the thermomechanical behavior of aluminum alloys (Al-1060, Al-6061, and Al-7075) under the combined action of tensile loading and laser irradiations. The continuous wave ytterbium fiber laser (wavelength 1080 nm) was employed as the irradiation source, while tensile loading was provided by the tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution, and the deformation behavior of aluminum alloys are analyzed. The experimental results represent the significant reduction in failure time for higher laser power densities and for high preloading values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. Fracture on a microscopic scale was predominantly ductile comprising micro-void nucleation, growth, and coalescence. The Al-1060 specimens behaved plastically to some extent, while Al-6061 and Al-7075 specimens experienced catastrophic failure. The reason and characterization of material failure by tensile and laser loading are explored in detail. A comparative behavior of under-tested materials is also investigated. This work suggests that studies considering only combined loading are not enough to fully understand the mechanical behavior of under-tested materials. For complete characterization, one should consider the effect of heating as well as loading rate and the corresponding involved processes with the help of thermomechanical coupling and the thermal elastic-plastic theory.
Keywords:  aluminum alloys      fiber laser      tensile loading      thermomechanical effects      failure evolution  
Received:  07 September 2017      Revised:  15 December 2017      Accepted manuscript online: 
PACS:  79.20.Ds (Laser-beam impact phenomena)  
  81.40.Wx (Radiation treatment)  
  81.70.Bt (Mechanical testing, impact tests, static and dynamic loads)  
  62.20.M- (Structural failure of materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61605079) and the Fundamental Research Funds for the Central Universities, China (Grant No. 30916014112-020).
Corresponding Authors:  Zewen Li     E-mail:  lizewen@njust.edu.cn

Cite this article: 

Mohsan Jelani, Zewen Li(李泽文), Zhonghua Shen(沈中华), Maryam Sardar Thermomechanical response of aluminum alloys under the combined action of tensile loading and laser irradiations 2018 Chin. Phys. B 27 037901

[1] Mabrouki T, Girardin F, Asad M and Rigal J F 2008 Int. J. Mach. Tool. Manu. 48 1187
[2] Ma K, Wen H, Hu T, Topping T D, Isheim D, Seidman D N, Lavernia E J and Schoenung J M 2014 Acta Mater. 62 141
[3] Lee H T and Shaue G H 1999 Mater. Sci. Eng. A 268 154
[4] Imam M, Rahman M and Khan M 2015 J. Eng. Sci. Tech. 10 730
[5] Li G R, Xue F, Wang H M, Zheng R, Zhu Y, Chu Q Z and Cheng J F 2016 Chin. Phys. B 25 106201
[6] Konovalov S, Zagulyaev D, Chen X Z, Gromov V and Ivanov Y 2017 Chin. Phys. B 26 126203
[7] Sathyajith S, Kalainathan S and Swaroop S 2013 Opt. Laser Technol. 45 389
[8] Scintilla L D 2014 Opt. Eng. 53 066113
[9] Medford J E and Gray P M 1980 15th Thermophysics Conference, July 14-16, 1980, Snowmass, USA, p. 1550
[10] Han W, Wang F, Zhou L D, Feng B, Jia H T, Li K Y, Xiang Y and Zheng W G 2012 Chin. Phys. B 21 077901
[11] Cao Y, Zhao X and Shin Y C 2013 J. Laser Appl. 25 032002
[12] Piehler T, Delucia F, Munson C, Homan B, Miziolek A and Mcnesby K 2005 Appl. Optics 44 3654
[13] Irizalp S G, Saklakoglu N, Akman E and Demir A 2014 Opt. Laser Technol. 56 273
[14] Hu H F, Ji Y, Hu Y, Ding X Y, Liu X W, Guo J H, Wang X L and Zhai H C 2011 Chin. Phys. B 20 044204
[15] Gao X, Song X W and Lin J Q 2011 Chin. Phys. B 20 024210
[16] Zhu Y, Ye X, Lin X, Wei C, Wang L and Cheng D 2012 2nd International Symposium on Laser Interaction with Matter, September 9-12, Xi'an, China, p. 8796
[17] Long L C, Wang T T and Liu L T 2015 Mater. Res. Innov. 19 171
[18] Handbook A 1990 ASM international 2 889
[19] Bowyer J, Luketa A, Gill W and Donaldson B 2011 Fire Saf. Sci. 10 1151
[20] Boyer and Gall T L 1985 American Society for Metals, Materials Park, OH
[21] Jelani M, Li Z, Shen Z, Sardar M and Tabassum A 2016 The 4$th International Symposium on Laser Interaction with Matter (LIMIS 2016)
[22] Ji L, Bin C, Quan Y, Ding-fei Z and Guo-zheng Q 2010 Trans. Nonferrous Met. Soc. China 20 371
[23] Jiang J, Atkinson H V and Wang Y 2017 J. Mater. Sci. Technol. 33 379
[24] Srivatsan T S, Sriram S, Veeraraghavan D and Vasudevan V 1997 J. Mater. Sci. 32 2883
[25] Wojtaszek M, Sleboda T, Czulak A, Weber G and Hufenbach W 2013 Arch. Metall. Mater. 58 1261
[26] Hassan S F, Zabiullah S, Al-Aqeeli N and Gupta M 2016 J. Mater. Res. 31 100
[27] Irizalp S G and Saklakoglu N 2016 Opt. Laser Eng. 77 183
[28] Joshi S S, Ghamarian I, Samimi P, Katakam S, Collins P C and Dahotre N B 2017 Philos. Mag. 97 497
[29] Jelani M, Bashir S, Khaleeq-ur Rehman M, Ahamad R, ul-Haq F, Yousaf D, Akram M, Afzal N, Chaudhry M U, Mahmood K, Hayat A and Ahmad S 2013 Eur. Phys. J. D 67
[30] Dalla Torre F H, Dubach A, Schällibaum J and Löffler J F 2008 Acta Mater. 56 4635
[31] Li P H, Guo W G, Huang W D, Su Y, Lin X and Yuan K B 2015 Mater. Sci. Eng. A 647 34
[32] Jelani M, Li Z, Shen Z and Sardar M 2017 Appl. Sci. 7 464
[33] Chen B, Yuan Q and Luo J 2010 Proceedings of the 12th International Conference on Aluminium Alloys 2147
[34] Peng X H, Fan J, Yang Y, Chen Y and Yin Y 2003 Int. J. Sol. Struct. 40 7385
[35] Mohsan J, Shazia B, Mahreen A, Daniel Y, Naveed A and Sajjad A 2014 Phys. Scr. 89 025703
[36] Summers P T, Chen Y, Rippe C M, Allen B, Mouritz A P, Case S W and Lattimer B Y 2015 Fire Sci. Rev. 4 1
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[6] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[7] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[8] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[9] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[10] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[11] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[12] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[13] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[14] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!