Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037103    DOI: 10.1088/1674-1056/27/3/037103

Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme

Q Mahmood1, M Yaseen2, K C Bhamu3, Asif Mahmood4, Y Javed2, Shahid M Ramay5
1 Materials Growth and Simulation Laboratory, Department of Physics, University of the Punjab, Lahore 54000, Pakistan;
2 Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan;
3 Department of Physics, Goa University, Goa 403206, India;
4 Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia;
5 Physics and Astronomy Department, College of Science, King Saud University, Riyadh, Saudi Arabia
Abstract  Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe2O4, calculated by employing PBEsol+mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John-Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe2O4 as the potential candidate for renewable energy applications.
Keywords:  frustrated magnetism      density functional theory      John-Teller distortion      Hund's rule  
Received:  24 October 2017      Revised:  30 November 2017      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  M Yaseen     E-mail:

Cite this article: 

Q Mahmood, M Yaseen, K C Bhamu, Asif Mahmood, Y Javed, Shahid M Ramay Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme 2018 Chin. Phys. B 27 037103

[1] Valenzuela R 2012 Physics Research International 2012 591839
[2] Arean C O, Diaz E G, Gonzalez J M R, Garcia M A 1988 J. Solid. Stat. Chem. 77 275
[3] Yafet Y and Kittel C 1952 Phys. Rev. B 87 290
[4] Kamazawa K, Park S, Lee S H, Sato T J and Tsunoda Y 2004 Phys. Rev. B 70 024418
[5] Nayak P K 2008 Mater. Chem. Phys. 112 24
[6] Yokoyama M, Ohta E and Satoo T 1998 J. Magn. Magn. Mater. 183 173
[7] Mahmoud M H, Abdallas A M, Hamdeh H H, Hikal W M, Taher S M and Ho J C 2003 J. Magn. Magn. Mater. 263 269
[8] Lou X, Liu S, Shi D and Chu W 2007 Mater. Chem. Phys. 105 67
[9] Miao F, Deng Z, Lv X, Gu G, Wan S, Fang X, Zhang Q and Yin S 2010 Solid State Commun. 150 2036
[10] Sagadevan S, Pal K, Chowdhury Z Z and Hoque M E 2017 Mater. Res. Express 4 075025
[11] Vasanthi V, Shanmugavani A, Sanjeeviraja C and Selvan R K 2012 J. Magn. Magn.Mater. 324 2100
[12] Chinnasamy C N, Narayanasamy A, Ponpandian N, Joseyphus R J, Chattopadhyay K, Shinoda K, Jeyadevan B, Tohji K, Nakatsuka K and Greneche J M 2001 J. Appl. Phys. 90
[13] Akamatsu H, Zong Y, Fujiki Y, Kamiya K, Fujita K, Murai S and Tanaka K 2008 IEEE Transaction. Magnetic. 44 2796
[14] Cheng C 2008 Phys. Rev. B 78 132403
[15] Zaari H, El Hachimi A G, Benyoussef A and El Kenz A 2015 J. Magn. Magn. Mater. 393 183
[16] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K, an augmented plane wave+local orbitals program for calculating crystal properties, Karlheinz Schwarz, Techn. Universitat, Vienna, Austria
[17] Blaha P, Schwarz K, Sorantin P and Trickey S K 1990 Comput. Phys. Commun. 59 339
[18] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[19] van de Walle A and Ceder G 1999 Phys. Rev. B 59 14992
[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[21] Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V and Sofo J O 2003 Phys. Rev. B 68 125210
[22] Hosseini S M 2008 Phys. Stat. Sol. 245 2800
[23] Zhang J, Li X and Yang J 2015 J. Mater. Chem. C 3 2563
[24] Wen C and Yan S 2010 J. Appl. Phys. 107 043913
[25] Saini H S, Singh M, Reshak A H and Kashyap M K 2013 J. Magn. Magn. Mater. 331 1
[26] Walsh A, Wai S H, Yan Y, Al-Jassim M M and Turner J A 2007 Phys. Rev. B 76 165119
[27] Varignon J, Bristowe N C and Ghosez P Sci. Rep. 5 15364
[28] Jeng H T, Lin S H and Hsue C S 2006 Phys. Rev. Lett. 97 067002
[29] Choi H C, Shim J H and Min B I 2006 Phys. Rev. B 74 172103
[30] Kumar A, Fennie C J and Rabe K M 2012 Phys. Rev. B 86 184429
[31] Kant C, Deisenhofer J, Tsurkan V and Loidl A 2010 J. Phys:Conf. Seri. 200 032032
[32] Ramay S M, Hassan M, Mahmood Q and Mahmood A 2017 Current Appl. Phys. 17 1038
[33] Mahmood Q, Hassan M, Ahmed S H A, Bhamu K C, Mahmood A and Ramay S M J Matt. Chem. Phys. Solid
[34] Khan M A, Kashyap A, Solanki A K, Nautiyal T and Auluck S 1993 Phys. Rev. B 48 16974
[35] Fox M 2001 Optical Properties of Solids, Oxford University Press ISBN:9780199573370
[36] Mahmood Q, Hassan M and Noor N A 2016 J. Phys.:Condens. Matter 28 506001
[37] Mahmood Q and Hassan M 2017 J. Alloy. Compond. 704 659
[38] Marius G 2010 Kramers-Kronig Relations (The Physics of Semiconductors) (Berlin Heidelberg:Springer) p. 775
[39] Penn D 1962 Phys. Rev. B 128 2093
[40] Mahmood Q, Alay-e-Abbas S M, Hassan M and Noor N A 2016 J. Alloy. Compond. 688 899
[41] Peng C and Gao L 2008 J. Am. Ceram. Soc. 91 2388
[42] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[43] Goldsmid H J and Douglas R W 1954 Br. J. Appl. Phys. 5 386
[44] Tritt T M 2011 Rev. Mater. Res. 41 433
[45] Ruleovaa P, Drasar C, Lostak P, Li C P, Ballikaya S and Uher C 2010 Mater. Chem. Phys. 119 2991
[46] Qu X, Wang W, Liu W, Yang Z, Duan X and Jia D 2011 Mater. Chem. Phys. 129 331
[47] Madsen G K H, Schwarz K and Singh D J 2006 Comput. Phys. Commun. 175 67
[48] Liu C and Morelli D T 2011 J. Elect. Mat. 40 678
[49] Ramachandran T, Rajeevan N E and Pradyumnan P P 2013 Mater. Sci. Appl. 4 816
[50] Saal J E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 Materials Design and Discovery with High-throughput Density Functional Theory:the Open Quantum Materials Database (oqmd), JOM 65 (11), pp. 1501-1509
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!