Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 030702    DOI: 10.1088/1674-1056/27/3/030702
GENERAL Prev   Next  

Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红)
Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
Keywords:  Duffing oscillator      weak signal detection      stopping oscillation system      small-scale periodic state  
Received:  16 August 2017      Revised:  04 December 2017      Accepted manuscript online: 
PACS:  07.50.Qx (Signal processing electronics)  
  05.45.-a (Nonlinear dynamics and chaos)  
  43.60.Hj (Time-frequency signal processing, wavelets)  
  05.45.Jn (High-dimensional chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61673066).
Corresponding Authors:  Xiao-peng Yan     E-mail:  yanxiaopeng@bit.edu.cn

Cite this article: 

Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红) Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator 2018 Chin. Phys. B 27 030702

[1] Zhang J and Zhang T 2015 Rev. Sci. Instrum. 86 025005
[2] Hänggi P 2002 Chemphyschem 3 285
[3] Li Y and Yang B J 2004 Chaotic Oscillator Detection Introduction (Beijing:Publishing House of Electronics Industry) p. 29 (in Chinese)
[4] Xu Y C, Yang C L and Qu X D 2010 Chin. Phys. B 19 030516
[5] Lai Z H and Leng Y G 2016 Mech. Syst. Signal. Pr. 81 60
[6] Zhao Z K, Wang X and Zhang X G 2014 Adv. Mech. Eng. 2014 1
[7] Wu J, Wang Y, Zhang W, Nie Z, Lin R and Ma H 2016 Mech. Syst. Signal. Pr. 82 130
[8] Birx D L and Pipenberg S J 1992 International Joint Conference on Neural Networks, June 7-11, 1992, Baltimore, MD, USA, p. 881
[9] Permann D and Hamilton I I 1992 Phys. Rev. Lett. 69 2607
[10] Zhao Z Z and Yang S P 2015 Comput. Electr. Eng. 41 1
[11] Peng H H, Xu X M, Yang B C and Yin L Z 2016 J. Phys. Soc. Jpn. 85 044005
[12] Hu N Q and Wen X S 2003 J. Sound Vib. 268 917
[13] Shi H, Fan S, Xing W and Sun J 2015 Mech. Syst. Signal Process. 50 535
[14] Costa A H, Enríquez-Caldera R, Tello-Bello šúdez-Gómez C R 2016 Digit. Signal Process. 55 32
[15] Wang G Y, Chen D J, Lin J Y and Chen X 1999 IEEE Trans. Ind. Electron. 46 440
[16] Wang G Y and He S 2003 IEEE Trans. Circ. Syst. 50 945
[17] Li Y, Lu P, Yang B J and Zhao X P 2006 Acta Phys. Sin. 55 1672 (in Chinese)
[18] Nie C Y and Shi Y W 2001 Chin. J. Sci. Instrum. 22 33
[19] Zeng Z Z, Zhou Y and Hu K 2015 Acta Phys. Sin. 64 070505 (in Chinese)
[20] Lai Z H and Leng Y G 2015 Sensors 15 21327
[21] Rashtchi V and Nourazar M 2015 Circuits Syst. Signal Process. 34 3101
[22] Li Y, Yang B J, Lin H B and Liu X X 2005 Acta Phys. Sin. 54 1994 (in Chinese)
[23] Fan J, Zhao W L and Wang W Q 2013 Acta Phys. Sin. 62 080502 (in Chinese)
[24] Zhou X X, Lai L and Luo M K 2013 Acta Phys. Sin. 62 090501 (in Chinese)
[25] Shaw S W and Holmes P J 1983 J. Sound. Vib. 90 129
[26] Wiggins S 1987 Phys. Lett. A 124 138
[27] Yan B N, Liu C X, Ni J K and Zhao L 2016 Chin. Phys. B 25 100502
[28] Liu H B, Wu D W, Jin W and Wang Y Q 2013 Acta Phys. Sin. 62 050501 (in Chinese)
[29] Li M P, Xu X M, Yang B C and Ding J F 2015 Chin. Phys. B 24 060504
[30] Lai Z H, Leng Y G, Sun J Q and Fan S B 2012 Acta Phys. Sin. 61 60 (in Chinese)
[31] Zhu W Q 2003 Nonlinear Stochastic Dynamical Systems and Control (Beijing:Science Press) pp. 330-335
[32] Zhang Z F, Ding T R, Huang W Z and Dong Z X 1997 Qualitative Theory of Differential Equation, 2nd end (Beijing:Science Press) pp. 450-451
[1] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[2] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[3] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[4] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[5] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[6] A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection
Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰). Chin. Phys. B, 2015, 24(6): 060504.
[7] Application of local polynomial estimation in suppressing strong chaotic noise
Su Li-Yun(苏理云), Ma Yan-Ju(马艳菊), and Li Jiao-Jun(李姣军) . Chin. Phys. B, 2012, 21(2): 020508.
[8] Regular nonlinear response of the driven Duffing oscillator to chaotic time series
Yuan Ye(袁野), Li Yue(李月), Danilo P. Mandic, and Yang Bao-Jun(杨宝俊). Chin. Phys. B, 2009, 18(3): 958-968.
[9] Extraction of periodic signals in chaotic secure communication using Duffing oscillators
Wang Yun-Cai(王云才), Zhao Qing-Chun(赵清春), and Wang An-Bang(王安帮). Chin. Phys. B, 2008, 17(7): 2373-2376.
[10] Analysis of a kind of Duffing oscillator system used to detect weak signals
Li Yue(李月), Yang Bao-Jun(杨宝俊), Yuan Ye(袁野), and Liu Xiao-Hua(刘晓华). Chin. Phys. B, 2007, 16(4): 1072-1076.
[11] Chaotic synchronization via linear controller
Chen Feng-Xiang(陈凤祥) and Zhang Wei-Dong(张卫东). Chin. Phys. B, 2007, 16(4): 937-941.
No Suggested Reading articles found!