Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 030201    DOI: 10.1088/1674-1056/27/3/030201
GENERAL   Next  

Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

Li-Yuan Ma(马立媛)1, Jia-Liang Ji(季佳梁)2, Zong-Wei Xu(徐宗玮)3, Zuo-Nong Zhu(朱佐农)3
1 Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China;
2 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China;
3 School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term.
Keywords:  nonintegrable dNLS equation      solitary waves      chaos      nonlinear nearest-neighbor interaction  
Received:  24 August 2017      Revised:  25 December 2017      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).
Corresponding Authors:  Zuo-Nong Zhu     E-mail:  znzhu@sjtu.edu.cn

Cite this article: 

Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农) Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays 2018 Chin. Phys. B 27 030201

[1] Scott A C and Macneil L 1983 Phys. Lett. A 98 87
[2] Sievers A J and Takeno S 1988 Phys. Rev. Lett. 61 970
[3] Marquii P, Bilbault J M and Remoissenet M 1995 Phys. Rev. E 51 6127
[4] Davydov A S 1973 J. Theor. Biol. 38 559
[5] Cai D, Bishop A R and Gronbech-Jensen N 1994 Phys. Rev. Lett. 72 591
[6] Eisenberg H, Silberberg Y, Morandotti R, Boyd A and Aitchison J 1998 Phys. Rev. Lett. 81 3383
[7] Morandotti R, Peschel U, Aitchison J, Eisenberg H and Silberberg Y 1999 Phys. Rev. Lett. 83 2726
[8] Christodoulides D N and Joseph R J 1988 Opt. Lett. 13 794
[9] Gómez-Gardeñes J and Floría L M 2004 Chaos 14 1130
[10] Pando L C L and Doedel E J 2004 Phys. Rev. E 69 036603
[11] Pando L C L and Doedel E J 2005 Phys. Rev. E 71 056201
[12] Pando L C L and Doedel E J 2007 Phys. Rev. E 75 016213
[13] Pando L C L and Doedel E J 2009 Physica D 238 687
[14] Ablowitz M J, Musslimani Z H and Biondini G 2002 Phys. Rev. E 65 026602
[15] Öster M, Johansson M and Eriksson A 2003 Phys. Rev. E 67 056606
[16] Rojas-Rojas S, Vicencio R A, Molina M I and Abdullaev F Kh 2011 Phys. Rev. A 84 033621
[17] Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Society for Industrial and Applied Mathematics, Philadelphia) pp. 163-168, 359-366
[18] Petviashvili V I 1976 Sov. J. Plasma Phys. 2 257
[19] Ablowitz M J and Biondini G 1998 Opt. Lett. 23 1668
[20] Pelinovsky D E and Stepanyants Y A 2004 SIAM J. Numer. Anal. 42 1110
[21] Flach S and Willis C R 1998 Phys. Rep. 295 181
[22] Flach S and Gorbach A V 2008 Phys. Rep. 467 1
[23] Eilbeck J C, Lomdahl P S and Scott A C 1985 Physica D 16 318
[24] Herbst B M and Ablowitz M J 1989 Phys. Rev. Lett. 62 2065
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
No Suggested Reading articles found!