Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120502    DOI: 10.1088/1674-1056/27/12/120502
GENERAL Prev   Next  

Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method

Sujuan Li(李素娟)1, Jiangchuan Niu(牛江川)2, Xianghong Li(李向红)3
1 School of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
2 School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;
3 Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract  

The dynamical properties of fractional-order Duffing-van der Pol oscillator are studied, and the amplitude-frequency response equation of primary resonance is obtained by the harmonic balance method. The stability condition for steady-state solution is obtained based on Lyapunov theory. The comparison of the approximate analytical results with the numerical results is fulfilled, and the approximations obtained are in good agreement with the numerical solutions. The bifurcations of primary resonance for system parameters are analyzed. The results show that the harmonic balance method is effective and convenient for solving this problem, and it provides a reference for the dynamical analysis of similar nonlinear systems.

Keywords:  fractional-order oscillator      harmonic balance method      primary resonance  
Received:  24 August 2018      Revised:  29 September 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  45.10.Hj (Perturbation and fractional calculus methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11872254 and 11672191).

Corresponding Authors:  Jiangchuan Niu     E-mail:  menjc@163.com

Cite this article: 

Sujuan Li(李素娟), Jiangchuan Niu(牛江川), Xianghong Li(李向红) Primary resonance of fractional-order Duffing-van der Pol oscillator by harmonic balance method 2018 Chin. Phys. B 27 120502

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press) p. 10
[2] Petras I 2011 Fractional-Order Nonlinear Systems (Beijing: Higher Education Press) p. 19
[3] Li C P and Deng W H 2007 Appl. Math. Comput. 187 777
[4] Chen J H and Chen W C 2008 Chaos, Solitons and Fractals 35 188
[5] Yang S P and Shen Y J 2009 Chaos, Solitons and Fractals 40 1808
[6] Yang J H, Ma Q, Wu C J and Liu H G 2018 Acta Phys. Sin. 67 054501 (in Chinese)
[7] Sun H G, Zhang Y, Baleanu D, Chen W and Chen Y Q 2018 Commun. Nonlinear Sci. Num. Simul. 64 213
[8] Li X H and Hou J Y 2016 Int. J. Nonlin. Mech. 81 165
[9] Rossikhin Y A and Shitikova M V 1997 Acta Mech. 120 109
[10] Shen Y J, Wei P and Yang S P 2014 Nonlinear Dyn. 77 1629
[11] André S, Meshaka Y and Cunat C 2003 Rheol. Acta 42 500
[12] Maqbool K, Bég O A and Sohail A 2016 Eur. Phys. J. 131 1
[13] Wang Q H and Tong D K 2010 Transport Porous Med. 81 295
[14] Wahi P and Chatterjee A 2004 Nonlinear Dyn. 38 3
[15] Chen L C, Zhao T L, Li W and Zhao J 2016 Nonlinear Dyn. 83 529
[16] Shen Y J, Niu J C, Yang S P and Li S J 2016 J. Comput. Nonlinear Dyn. 11 051027
[17] Xu Y, Li Y G, Liu D, Jia W T and Huang H 2013 Nonlinear Dyn. 74 745
[18] Shen Y J, Wen S F, Li X H, Yang S P and Xing H J 2016 Nonlinear Dyn. 85 1457
[19] Xie F and Lin X Y 2009 Phys. Scr. 136 14033
[20] R, R H, Sah S M and Suchorsky M K 2010 Commun. Nonlinear Sci. 15 3254
[21] Yang J H and Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese)
[22] Guo Z J, Leung A Y T and Yang H X 2011 Appl. Math. Model. 35 3918
[23] Kumar P, Narayanan S and Gupta S 2016 Probabilist. Eng. Mech. 45 70
[24] Awrejcewicz J and Mrozowski J 1989 J. Sound Vib. 132 89
[25] Kimiaeifar A, Saidi A R, Bagheri G H, Rahimpour M and Domairry D G 2009 Chaos, Solitons and Fractals 42 2660
[26] KyziołJ and Okniński A 2015 Nonlinear Dyn. Syst. Theory 15 25
[27] Leung A Y T, Yang H X and Zhu P 2014 Commun. Nonlinear Sci. Num. Simul. 19 1142
[28] Matouk A E 2011 Commun. Nonlinear Sci. Num. Simul. 16 975
[29] Al-Shyyab A and Kahraman A 2005 J. Sound Vib. 284 151
[30] Masiani R, Capecchi D and Vestroni F 2002 Int. J. Nonlinear Mech. 37 1421
[31] Molla M H U, Razzak M A and Alam M S 2016 Results Phys. 6 238
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!