Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120503    DOI: 10.1088/1674-1056/27/12/120503
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

Effect of temporal disorder on wave packet dynamics in one-dimensional kicked lattices

Yuting Wang(王雨婷)1, Yi Gao(高绎)1,2, Peiqing Tong(童培庆)1,3
1 Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 Jiangsu Key Laboratory on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
3 Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Abstract  

Inspired by the recent experimental progress in noisy kicked rotor systems, we investigate the effect of temporal disorder or quasi-periodicity in one-dimensional kicked lattices with pulsed on-site potential. We found that, unlike the spatial disorder or quasi-periodicity which usually leads to localization, the effect of the temporal one is more complex and depends on the spatial configuration. If the kicked on-site potential is periodic in real space, then the wave packet will stay diffusive in the presence of temporal disorder or quasi-periodicity. On the other hand, if the kicked on-site potential is spatially quasi-periodic, then the temporal disorder or quasi-periodicity may lead to a shift of the transition point of the dynamical localization and destroy the dynamical localization in a certain parameter range. The results we obtained can be readily tested by experiments and may help us better understand the dynamical localization.

Keywords:  temporal disorder      quasi-periodicity      dynamical localization  
Received:  14 August 2018      Revised:  15 November 2018      Accepted manuscript online: 
PACS:  05.60.Gg (Quantum transport)  
  05.30.Rt (Quantum phase transitions)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11575087) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20160094).

Corresponding Authors:  Yi Gao, Peiqing Tong     E-mail:  flygaoonly@njnu.edu.cn;pqtong@njnu.edu.cn

Cite this article: 

Yuting Wang(王雨婷), Yi Gao(高绎), Peiqing Tong(童培庆) Effect of temporal disorder on wave packet dynamics in one-dimensional kicked lattices 2018 Chin. Phys. B 27 120503

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Evers F and Mirlin A D 2008 Rev. Mod. Phys. 80 1355
[3] Fallani L, Lye J E, Guarrera V, Fort C and Inguscio M 2007 Phys. Rev. Lett. 98 130404
[4] Billy J, Josse V, Zuo Z C, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 435 891
[5] Bermudez A, Martin-Delgado M A and Porras D 2010 New J. Phys. 12 123016
[6] Harper P G 1995 Proc. Phys. Soc. A 68 874
[7] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133
[8] Kohmoto M 1983 Phys. Rev. Lett. 51 1198
[9] Thouless D J 1983 Phys. Rev. B 28 4272
[10] Ingolda G L, Wobst A, Aulbach Ch and Hänggi P 2002 Eur. Phys. J. B 30 175
[11] Roscilde T 2008 Phys. Rev. A 77 063605
[12] Roux G, Barthel T, McCulloch I P, Kollath C, Schollwöck U and Giamarchi T 2008 Phys. Rev. A 78 023628
[13] Deng X L, Citro R, Minguzzi A and Orignac E 2008 Phys. Rev. A 78 013625
[14] Cai X M, Chen S and Wang Y P 2010 Phys. Rev. A 81 053629
[15] Cai X M, Chen S and Wang Y P 2010 Phys. Rev. A 81 023626
[16] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[17] Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N and Silberberg Y 2009 Phys. Rev. Lett. 103 013901
[18] Deissler B, Zaccanti M, Roati G, D'Errico C, Fattori M, Modugno M, Modugno G and Inguscio M 2010 Nat. Phys. 6 354
[19] Lucioni E, Deissler B, Tanzi L, Roati G, Zaccanti M, Modugno M, Larcher M, Dalfovo F, Inguscio M and Modugno G 2011 Phys. Rev. Lett. 106 230403
[20] Casati G, Chirikov B V, Ford J and Izrailev F M 1979 Lect. Notes Phys. 93 334
[21] Fishman S, Grempel D R and Prange R E 1982 Phys. Rev. Lett. 49 509
[22] Grempel D R, Prange R E and Fishman S 1984 Phys. Rev. A 29 1639
[23] Casati G, Guarneri I, Izrailev F and Scharf R 1990 Phys. Rev. Lett. 64 5
[24] Moore F L, Robinson J C, Bharucha C F, Sundaram B and Raizen M G 1995 Phys. Rev. Lett. 75 4598
[25] Ringot J, Szriftgiser P, Garreau J C and Delande D 2000 Phys. Rev. Lett. 85 2741
[26] Chabé J, Lemarié G, Grémaud B, Delande D, Szriftgiser P and Garreau J C 2008 Phys. Rev. Lett. 101 255702
[27] Lemarié G, Lignier H, Delande D, Szriftgiser P and Garreau J C 2010 Phys. Rev. Lett. 105 090601
[28] Qin P Q, Yin C H and Chen S 2014 Phys. Rev. B 90 054303
[29] Cohen D 1991 Phys. Rev. Lett. 67 1945
[30] Cohen D 1991 Phys. Rev. A 44 2292
[31] Steck D A, Milner V, Oskay W H and Raizen M G 2000 Phys. Rev. E 62 3461
[32] Schomerus H and Lutz E 2007 Phys. Rev. Lett. 98 260401
[33] Schomerus H and Lutz E 2008 Phys. Rev. A 77 062113
[34] Lepers M, Zehnlé V and Garreau J C 2010 Phys. Rev. A 81 062132
[35] Ammann H, Gray R, Shvarchuck I and Christensen N 1998 Phys. Rev. Lett. 80 4111
[36] Klappauf B G, Oskay W H, Steck D A and Raizen M G 1998 Phys. Rev. Lett. 81 1203
[37] Oskay W H, Steck D A and Raizen M G 2003 Chaos, Solitons and Fractals 16 409
[38] White D H, Ruddell S K and Hoogerland M D 2014 New J. Phys. 16 113039
[39] Sarkar S, Paul S, Vishwakarma C, Kumar S, Verma G, Sainath M, Rapol U D and Santhanam M S 2017 Phys. Rev. Lett. 118 174101
[40] Ryu C S, Oh G Y and Lee M H 1993 Phys. Rev. B 48 132
[41] Brito P E D, Silva C A A D and Nazareno H N 1995 Phys. Rev. B 51 6096
[42] Dunlap D H, Wu H L and Phillips P W 1990 Phys. Rev. Lett. 65 88
[43] Bovier A 1992 J. Phys. A: Math. Gen. 25 1021
[44] Katsanos E, Evangelou S N and Xiong S J 1995 Phys. Rev. B 51 895
[45] Wilcox R M 1967 J. Math. Phys. 8 962
[1] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[2] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[3] Dynamical localization effect in a coupled quantum dot array driven by an AC magnetic field
Xia Jun-Jie(夏俊杰) and Nie Yi-Hang(聂一行) . Chin. Phys. B, 2011, 20(9): 097306.
[4] Quantum control of two interacting electrons in a coupled quantum dot
Song Hong-Zhou(宋红州), Zhang Ping(张平), Duan Su-Qing(段素青), and Zhao Xian-Geng(赵宪庚). Chin. Phys. B, 2006, 15(9): 2130-2141.
[5] Effect of electron-phonon interactions on dynamical localization of semiconductor superlattices
Wang Zhi-Gang (王志刚), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2005, 14(6): 1232-1237.
[6] Effects of bias on dynamics of an AC-driven two-electron quantum-dot molecule
Wang Li-Min (王立民), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚), Liu Cheng-Shi (刘承师). Chin. Phys. B, 2005, 14(2): 409-419.
[7] Effect of external noise on the dynamical localization of two coupling electrons in quantum dot array
He An-Min (何安民), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2005, 14(11): 2320-2324.
[8] Dynamical properties of two-band superlattices with strong interband coupling in real space under the action of ac and dc-ac fields
Duan Su-Qing (段素青), Wang Zhi-Gang (王志刚), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2003, 12(8): 899-904.
[9] DYNAMICAL BEHAVIOUR OF THE SUPERCURRENT IN MESOSCOPIC JOSEPHSON JUNCTIONS
Yu Kai-zhi (俞开智), Zou Jian (邹健), Shao Bin (邵彬). Chin. Phys. B, 2001, 10(12): 1154-1156.
No Suggested Reading articles found!