Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118103    DOI: 10.1088/1674-1056/27/11/118103
Special Issue: TOPICAL REVIEW — Fundamental research under high magnetic fields
TOPICAL REVIEW—Fundamental research under high magnetic fields Prev   Next  

High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review

Tie Liu(刘铁)1, Qiang Wang(王强)1, Yi Yuan(苑轶)1,2, Kai Wang(王凯)1, Guojian Li(李国建)1
1 Key Laboratory of Electromagnetic Processing of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China;
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
Abstract  

We present a review of the principal developments in the evolution and synergism of solute and particle migration in a liquid melt in high-gradient magnetic fields and we also describe their effects on the solidification microstructure of alloys. Diverse areas relevant to various aspects of theory and applications of high-gradient magnetic field-controlled migration of solutes and particles are surveyed. They include introduction, high-gradient magnetic field effects, migration behavior of solute and particles in high-gradient magnetic fields, microstructure evolution induced by high-gradient magnetic fieldcontrolled migrations of solute and particles, and properties of materials modified by high-gradient magnetic field-tailored microstructure. Selected examples of binary and multiphase alloy systems are presented and examined, with the main focus on the correlation between the high-gradient magnetic field-modified migration and the related solidification microstructure evolution. Particular attention is given to the mechanisms responsible for the microstructure evolution induced by highgradient magnetic fields.

Keywords:  high gradient magnetic field      migration of solute and particle      solidification      microstructure  
Received:  30 July 2018      Revised:  19 October 2018      Accepted manuscript online: 
PACS:  81.30.Fb (Solidification)  
  64.70.kd (Metals and alloys)  
  64.75.Op (Phase separation and segregation in alloying)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51425401, 51690161, 51574073, and 51774086), Fundamental Research Funds for the Central Universities, China (Grant Nos. N170902002 and N170908001), and Liaoning Innovative Research Team in University, China (Grant No. LT2017011).

Corresponding Authors:  Qiang Wang     E-mail:  wangq@epm.neu.edu.cn

Cite this article: 

Tie Liu(刘铁), Qiang Wang(王强), Yi Yuan(苑轶), Kai Wang(王凯), Guojian Li(李国建) High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review 2018 Chin. Phys. B 27 118103

[1] Liu F and Yang G C 2006 Int. Mater. Rev. 51 145
[2] Liu F, Sommer F, Bos C and Mittemeijer E J 2007 Int. Mater. Rev. 52 193
[3] Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M,Purdy G, Rappaz M and Trivedi R 2009 Acta Mater. 57 941
[4] Asai S 2000 Sci. Technol. Adv. Mater. 1 191
[5] Watanabe T, Tsurekawa S, Zhao X and Zuo L 2006 Scr. Mater. 54 969
[6] Wang Q, Liu T, Wang K, Wang C J, Nakajima K and He J C 2010 ISIJ. Int. 50 1941
[7] Wang Q, Liu T, Wang K, Gao P F, Liu Y and He J C 2014 ISIJ. Int. 54 516
[8] Akamatsu S and Nguyen-Thi H 2016 Acta Mater. 108 325
[9] Liu T, Wang Q, Zhang H W, Lou C S, Nakajima K and He J C 2011 J. Mater. Sci. 46 1628
[10] Liu T, Wang Q, Zhang H F, Wang K, Pang X J and He J C 2009 J. Alloy. Compd. 469 258
[11] Wang J, Fautrelle Y, Ren Z M, Li X, Nguyen-Thi H, Mangelinck-NoelN, Salloum Abou Jaoude G, Zhong Y B, Kaldre I, Bojarevics A andBuligins L 2012 Appl. Phys. Lett. 101 1331
[12] Ikezoe Y, Hirota N, Nakagawa J and Kitazawa K 1998 Nature 393 749
[13] Alboussiere T, Neubr, A C, Garandet J P and Moreau R 1995 Magnetohydrodynamics 31 228
[14] Sugiyama T, Tahashi M, Sassa K and Asai S 2003 ISIJ. Int. 43 855
[15] Martin J E, Venturini E, Odinek J and Anderson R A 2000 Phys. Rev. E 61 2818
[16] Nakamura H, Takayama T, Uetake H, Hirota N and Kitazawa A K 2005 Phys. Rev. Lett. 94 144501
[17] Wang Y, Hirota N, Okada H, Liu T, Wang Q and Sakka Y 2014 Key Eng. Mater. 616 188
[18] Wang Q, Liu T, Gao A, Zhang C, Wang C J and He J C 2007 Scr. Mater. 56 1087
[19] Lou C S, Wang Q, Wang C J, Liu T, Nakajima K and He J C 2009 J. Alloy. Compd. 472 225
[20] Liu T, Wang Q, Gao A, Zhang C, Wang C J and He J C 2007 Scr. Mater. 57 992
[21] Wang Q, Wang C J, Liu T, Wang K and He J C 2007 J. Mater. Sci. 42 10000
[22] Jin F W, Ren Z M, Ren W L, Deng K, Zhong Y B and Yu J B 2008 Sci. Technol. Adv. Mater. 9 024202
[23] Wang Q, Liu T, Zhang C, Gao A, Li D G and He J C 2009 Sci. Technol. Adv. Mater. 10 014606
[24] Boos A, Lamparter P and Steeb S 1977 Z. Naturforsch. A 32 1222
[25] Zu F Q, Zhu Z G, Guo L J, Qin X B, Yang H and Shan W J 2002 Phys. Rev. Lett. 89 125505
[26] Liu T, Wang Q, Hirota N, Liu Y, Chen S H and He J C 2011 J. Cryst. Growth 335 121
[27] Steinberg D J 1974 Metall. Mater. Trans. 5 1341
[28] Dupree R and Seymour E F W 1972 Liquid Metals (New York:MarcelDekke) p. 461
[29] Jie W 2001 Sci. Technol. Adv. Mater. 2 29
[30] Lan C W and Tu C Y 2002 J. Cryst. Growth 237 1881
[31] Nishida M, Kawamura Y and Yamamuro T 2004 Mater. Sci. Eng. A 375-377 1217
[32] Li Z, Samuel A M, Samuel F H, Ravindran C and Valtierra S 2003 J. Mater. Sci. 38 1203
[33] Loboda-Cackovic J 1997 Vacuum 48 913
[34] Stelian C, Delannoy Y, Fautrelle Y and Duffar T 2004 J. Cryst. Growth 266 207
[35] Hermann R, Behr G, Gerbeth G, Priede J, Uhlemann H, Fischer F andSchultz L 2005 J. Cryst. Growth 275 e1533
[36] Suresh S 2001 Science 292 2447
[37] Fukui Y and Watanabe Y 1996 Metall. Mater. Trans. A 27 4145
[38] Yasuda H, Ohnaka I, Kawakami O, Ueno K and Kishio K 2003 ISIJ. Int. 43 942
[39] Utech H P and Flemings M C 1966 J. Appl. Phys. 37 2021
[40] Matthiesen D H, Wargo M J, Motakef S, Carlson D J, Nakos J S andWitt A F 1987 J. Cryst. Growth 85 557
[41] Sha Y G, Su C H and Lehoczky S L 1997 J. Cryst. Growth 173 88
[42] Wang C J, Wang Q, Wang Z Y, Li H T, Nakajima K and He J C 2008 J. Cryst. Growth 310 1256
[43] Yasuda H, Ohnaka I, Kawakami O, Ueno K and Kishio K 2003 ISIJ. Int. 43 942
[44] Li L, Zhang Y D, Esling C, Zhao Z H, Zuo Y B, Zhang H T and Cui JZ 2009 J. Mater. Sci. 44 1063
[45] Li X, Fautrelle Y, Zaidat K, Gagnoud A, Ren Z M, Moreau R, ZhangY D and Esling C 2010 J. Cryst. Growth 312 267
[46] Yasuda H, Ohnaka I, Ninomiya Y, Ishii R, Fujita S and Kishio K 2004 J. Cryst. Growth 260 475
[47] Wang Q, Lou C S, Liu T, Pang X J, Nakajima K and He J C 2009 ISIJ. Int. 49 1094
[48] Liu T, Wang Q, Wang C J, Li H T, Wang Z Y and He J C 2011 Metall. Mater. Trans. 42 1863
[49] Li X, Ren Z M and Fautrelle Y 2008 Mater. 29 1796
[50] Dong M, Liu T, Liao J, Xiao Y B, Yuan Y and Wang Q 2016 J. Alloy. Compd. 689 1020
[51] Liu T, Wang Q, Gao A, Zhang H W, Wang K and He J C 2010 J. Mater. Res. 25 1718
[52] Liu T, Wang Q, Wang C J, Liu Z G, Yuan Y and He J C 2010 ISIJ. Int. 50 1947
[53] De Rango P, Lees M, Lejay P, Sulpice A and Tournier R 1991 Nature 349 770
[54] Liu T, Wang Q, Gao A, Zhang C, Li D G and He J C 2009 J. Alloy. Compd. 481 755
[55] Liu T, Wang Q, Zhang C, Gao A, Li D G and He J C 2009 J. Mater. Res. 24 2321
[56] Gao P F, Liu T, Dong M, Yuan Y, Wang K and Wang Q 2016 Funct. Mater. Lett. 9 1650003
[57] Liu T, Liu Y, Wang Q, Iwai, K, Gao P F and He J C 2013 J. Phys. D-Appl. Phys. 46 125005
[58] Gao P F, Liu T, Dong M, Yuan Y and Wang Q 2016 J. Magn. Magn. Mater. 401 755
[59] Gao P F, Wang Q, Liu T, Liu Y, Niu S X and He J C 2015 IEEE Trans. Magn. 51 1
[60] Matsushima H, Nohira T, Mogi I and Ito Y 2004 Surf. Coat. Technol. 179 245
[61] Liu T, Gao P F, Dong M, Xiao Y B and Wang Q 2016 AIP Adv. 6 056216
[62] Bishop K J M, Wilmer C E, Soh S and Grzybowski B A 2009 Small 5 1600
[63] Zahn K, Méndezalcaraz J M and Maret G 1997 Phys. Rev. Lett. 79 175
[64] Wirtz D and Fermigier M 1994 Phys. Rev. Lett. 72 2294
[65] Tierno P and Goedel W A 2005 J. Chem. Phys. 122 094712
[66] Wang Q, Lou C S, Liu T, Wei N, Wang C J and He J C 2009 J. Phys. D:Appl. Phys. 42 025001
[67] Lou C S, Wang Q, Liu T, Wei N, Wang C J and He J C 2010 J. Alloy. Compd. 505 96
[68] Li X, Fautrelle Y and Ren Z M 2008 Acta Mater. 56 3146
[69] Li X, Fautrelle Y, Ren Z M, Gagnoud A, Zhang Y D and Esling C 2011 J. Cryst. Growth 318 23
[70] Li X, Li Q Y, Ren Z M, Fautrelle Y, Lu X G, Gagnoud A, Zhang Y D,Esling C, Wang H, Dai Y M and Wang Q L 2013 J. Alloy. Compd. 581 769
[71] Tewari S N, Shah R and Song H 1994 Metall. Mater. Trans. A:Phys. Metall. Mater. Sci. 25 1535
[72] Wang Q, Li D G, Wang K, Wang Z Y and He J C 2007 Scr. Mater. 56 485
[73] Li X, Fautrelle Y and Ren Z M 2007 Acta Mater. 55 3803
[74] Wu M X, Liu T, Dong M, Sun J M, Dong S L and Wang Q 2017 J. Appl. Phys. 121 064901
[75] Chen T and Stutius W 1974 IEEE Trans. Magn. 10 581
[76] Kishimoto M and Wakai K 1975 Jpn. J. Appl. Phys. 14 893
[77] Guo X, Altounian Z and Ström-Olsen J O 1991 J. Appl. Phys. 69 6067
[78] Saha S, Obermyer R T, Zande B J, Chandhok V K, Simizu S, Sankar SG and Horton J A 2002 J. Appl. Phys. 91 8525
[79] Okuda H, Senba S, Sato H, Shimada K, Namatame H and Taniguchi M1999 J. Electron. Spectrosc. Relat. Phenom. 101 657
[80] Seshu Bai V and Rama Rao K V S 1984 J. Appl. Phys. 55 2167
[81] Akinaga H, Suzuki Y, Tanaka K, Ando K and Katayama T 1995 Appl. Phys. Lett. 67 141
[82] Clark A E and Belson H S 1972 Phys. Rev. B 5 3642
[83] Jiles D C 1994 J. Phys. D:Appl. Phys. 27 1
[84] Wang Q, Liu Y, Liu T, Gao P F, Wang K and He J C 2012 Appl. Phys. Lett. 101 132406
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[8] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[9] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[10] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[11] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[12] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[13] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[14] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[15] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
No Suggested Reading articles found!