Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 015201    DOI: 10.1088/1674-1056/20/1/015201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge

Shang Wan-Li(尚万里)a)†, Zhang Yuan-Tao(张远涛)b), Wang De-Zhen(王德真)c), Sang Chao-Feng(桑超峰)c), Jiang Shao-En(江少恩) a), Yang Jia-Min(杨家敏)a), Liu Shen-Ye(刘慎业)a), and M. G. Kongd)
a Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; b School of Electrical Engineering, Shandong University, Jinan 250061, China; c State Key Laboratory for Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China; d Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU, UK
Abstract  This paper performs a numerical simulation of concentric-ring discharge structures within the scope of a two-dimensional diffusion–drift model at atmospheric pressure between two parallel circular electrodes covered with thin dielectric layers. With a relative high frequency the discharge structures present different appearances of ring structures within different radii in time due to the evolvement of the filaments. The spontaneous electron density distributions help understanding the formation and development of self-organized discharge structures. During a cycle the electron avalanches are triggered by the electric field strengthened by the feeding voltage and the residual charged particles on the barrier surface deposited in the previous discharges. The accumulation of charges is shown to play a dominant role in the generation and annihilation of the discharge structures. Besides, the rings split and unify to bring and annihilate rings which form a new discharge structure.
Keywords:  dielectric barrier discharge      plasma simulation      gas discharge  
Received:  12 June 2010      Revised:  10 July 2010      Accepted manuscript online: 
PACS:  52.25.Mq (Dielectric properties)  
  52.30.Es  
  51.50.+v (Electrical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50537020 and 50528707).

Cite this article: 

Shang Wan-Li(尚万里), Zhang Yuan-Tao(张远涛), Wang De-Zhen(王德真), Sang Chao-Feng(桑超峰), Jiang Shao-En(江少恩), Yang Jia-Min(杨家敏), Liu Shen-Ye(刘慎业), and M.~G. Kong Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge 2011 Chin. Phys. B 20 015201

[1] Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
[2] Liang Z, L"u B, Luo H Y and Wang X X 2009 Chin. Phys. B 18 646
[3] Dong L F, Fan W L, He Y F and Xiao H 2009 Acta Phys. Sin. 58 94 (in Chinese)
[4] Gurevich E L, Zanin A L, Moskalenko A S and Purwins H G 2003 Phys. Rev. Lett. 91 154501
[5] Gollub J P and Langer J S 1999 Rev. Mod. Phys. 71 S396
[6] Ristow G H 1995 Pattern Formation in Granular Materials (Berlin: Springer)
[7] Thompson K L, Bajaj K L S and Ahlers G 2002 Phys. Rev. E 65 046218
[8] Maini P K, Painter K J and Chau H N P 1997 J. Chem. Soc. Faraday Trans. 93 3601
[9] Dong L F, Liu F C, Liu S H, He Y F and Fan W L 2005 Phys. Rev. E 72 046215
[10] Radu I, Bartnikas R and Wertheimer M R 2005 IEEE Trans. Plasma Sci. 33 280
[11] Shirafuji T, Kitagawa T, Wakai T and Tachibana K 2003 Appl. Phys. Lett. 83 2309
[12] Brauer I, Bode M, Ammelt E and Purwins H G 2000 Phys. Rev. Lett. 84 4104
[13] Pismen L M 2001 Phys. Rev. Lett. 86 548
[14] Yang Y, Shi J J, Harry J E, Proctor J, Garner C P and Kong M G 2005 IEEE Trans. Plasma Sci. 33 298
[15] Guikema J, Miller N, Niehof J, Klein M and Walhout M 2000 Phys. Rev. Lett. 85 3817
[16] Wang Y H, Zhang Y T, Wang D Z and Kong M G 2007 Appl. Phys. Lett. 90 071501
[17] Deng X T, Shi J J, Shama G and Kong M G 2005 Appl. Phys. Lett. 87 153901
[18] Brauer I, Punset C, Purwins H G and Boeuf J P 1999 J. Appl. Phys. 85 7569
[19] Steinle G, Neundorf D, Hiller W and Pietralla M 1999 J. Appl. D 32 1350
[20] Radehaus C, Dohmen R, Willebrand H and Niedernostheide F 1990 J. Phys. Rev. A 42 7426
[21] Zhang P and Kortshagen U 2006 J. Phys. D 39 153
[22] Zhang Y T and Wang D Z 2005 J. Appl. Phys. 98 113308
[23] Stollenwerk L 2006 Phys. Rev. Lett. 96 255001
[24] Kulikovsky A A 1994 J. Phys. D 27 2556
[25] Kulikovsky A A 1994 J. Phys. D 27 2564
[26] Ward A L 1962 J. Appl. Phys. 33 2789
[27] Raizer Y P 1991 Gas Discharge Physics (New York: Springer)
[28] Zhang Y T, Wang D Z and Wang Y H 2005 Phys. Plasmas 12 103508
[29] Shi J J and Kong M G 2003 J. Appl. Phys. 94 5504 endfootnotesize
[1] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[2] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[3] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[4] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[5] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[6] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[7] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[8] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
[9] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[10] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[11] Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet
Mu-Yang Qian(钱沐杨), Cong-Ying Yang(杨从影), Zhen-dong Wang(王震东), Xiao-Chang Chen(陈小昌), San-Qiu Liu(刘三秋), De-Zhen Wang(王德真). Chin. Phys. B, 2016, 25(1): 015202.
[12] Backward Raman amplification in plasmas with chirped wideband pump and seed pulses
Wu Zhao-Hui (吴朝辉), Wei Xiao-Feng (魏晓峰), Zuo Yan-Lei (左言磊), Liu Lan-Qin (刘兰琴), Zhang Zhi-Meng (张智猛), Li Min (李敏), Zhou Yu-Liang (周煜梁), Su Jing-Qin (粟敬钦). Chin. Phys. B, 2015, 24(1): 014211.
[13] Exploration of the Townsend regime by discharge light emission in a gas discharge device
Hilal Yucel Kurt. Chin. Phys. B, 2014, 23(1): 015201.
[14] Spontaneous transition of one-dimensional plasma photonic crystal's orientation in dielectric barrier discharge
Fan Wei-Li (范伟丽), Dong Li-Fang (董丽芳). Chin. Phys. B, 2013, 22(1): 014213.
[15] Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures
Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健). Chin. Phys. B, 2013, 22(1): 015203.
No Suggested Reading articles found!