Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100203    DOI: 10.1088/1674-1056/27/10/100203
GENERAL Prev   Next  

Factorization method for inverse obstacle scattering problem in three-dimensional planar acoustic waveguides

Xue Qin(秦雪)
School of Mathematical Sciences, Peking University, Beijing 100871, China
Abstract  

In this paper, we consider the inverse scattering problem of reconstructing a bounded obstacle in a three-dimensional planar waveguide from the scattered near-field data measured on a finite cylindrical surface containing the obstacle and corresponding to infinitely many incident point sources also placed on the measurement surface. The obstacle is allowed to be an impenetrable scatterer or a penetrable scatterer. We establish the validity of the factorization method with the near-field data to characterize the obstacle in the planar waveguide by constructing an outgoing-to-incoming operator which is an integral operator defined on the measurement surface with the kernel given in terms of an infinite series.

Keywords:  factorization method      planar waveguide      inverse scattering problem  
Received:  11 May 2018      Revised:  14 August 2018      Accepted manuscript online: 
PACS:  02.30.Zz (Inverse problems)  
  02.30.Tb (Operator theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61421062 and 61520106004) and the Microsoft Research Fund of Asia.

Corresponding Authors:  Xue Qin     E-mail:  qinxue0406@pku.edu.cn

Cite this article: 

Xue Qin(秦雪) Factorization method for inverse obstacle scattering problem in three-dimensional planar acoustic waveguides 2018 Chin. Phys. B 27 100203

[1] Colton D and Kress R 2013 Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. (New York:Springer) p. 1
[2] Kirsch A 2011 An introduction to mathematical theory of inverse problem (Berlin:Springer) p. 1
[3] Arens T, Gintides and Lechleiter A 2008 Math. Method. Appl. Sci. 31 821
[4] Arens T, Gintides and Lechleiter A 2011 SIAM J. Appl. Math. 71 753
[5] Bourgeois L, Chambeyron C and Kusiak S 2007 J. Comput. Appl. Math. 204 387
[6] Bourgeois L and Lunéville E 2008 Inverse Probl. 24 015018
[7] Ikehata M, Makrakis G N and Nakamura G 2004 Math. Method Appl. Sci. 27 1367
[8] Lechleiter A and Nguyen D L 2012 IMA J. Numer. Anal. 32 813
[9] Dediu S and Mclaughlin J R 2006, Inverse Probl. 22 1227
[10] Gilbert R P, Werby M and Xu Y Z 2001 J. Comput. Acoust. 9 1025
[11] Chen Z M and Huang G H 2015 Sci. Chin. Math. 58 1811
[12] Liu K J, Xu Y Z and Zou J 2014 Appl. Math. Comput. 235 364
[13] Sun J G and Zheng C X 2013 Contemp. Math. 586 341
[14] Ahluwalia D S and Keller J B 1977 "Exact and asymptotic representations of the sound field in a stratified ocean", in Wave Propagation and Underwater Acoustics (Berlin, Heidelberg:Springer) 70 p. 14
[15] Xu Y Z, Mawata C and Lin W 2000 Inverse Probl. 16 1761
[16] Arens T and Kirsh A 2002 Inverse Probl. 19 1195
[17] Hu G H, Yang J Q, Zhang B and Zhang H W 2014 Inverse Probl. 30 095005
[18] Kirsch A and Grinberg N 2008 The Factorization Method for Inverse Problems (Oxford:Oxford University Press) p. 1
[19] Yin T, Hu G H, Xu L W and Zhang B 2016 Inverse Probl. 32 015003
[20] Xu Y Z 1990 Appl. Anal. 35 129
[21] Ramm A G and Makrakis G N 1998 in Spectral and Scattering Theory (New York:Plenum Publishers) p. 89
[22] Linton C M and Mclver P 2007 Wave Motion 45 16
[23] McLean W 2000 Strongly elliptic systems and boundary integral equations (Cambridge:Cambridge University Press) p. 1
[24] Lechleiter A 2009 Inverse Probl. Imaging 3 123
[1] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[2] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[3] Techniques of microwave permeability characterization for thin films
Xi-Ling Li(李喜玲), Jian-Bo Wang(王建波), Guo-Zhi Chai(柴国志). Chin. Phys. B, 2019, 28(9): 097504.
[4] Giant Goos-Hänchen shifts of waveguide coupled long-range surface plasmon resonance mode
Qi You(游琪), Jia-Qi Zhu(祝家齐), Jun Guo(郭珺), Lei-Ming Wu(吴雷明), Xiao-Yu Dai(戴小玉), Yuan-Jiang Xiang(项元江). Chin. Phys. B, 2018, 27(8): 087302.
[5] Fabrication of Al air-bridge on coplanar waveguide
Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(10): 100310.
[6] High quality factor superconducting coplanar waveguide fabricated with TiN
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(5): 058402.
[7] Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators
Ying Jiang(蒋莹), Bo Li(李博), Bin Wei(魏斌), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松), Li-Nan Jiang(姜立楠). Chin. Phys. B, 2017, 26(10): 108501.
[8] Tunable coplanar waveguide resonator with nanowires
Zhou Yu (周渝), Jia Tao (郏涛), Zhai Ji-Quan (翟计全), Wang Cheng (汪橙), Zhong Xian-Qian (钟先茜), Cao Zhi-Min (曹志敏), Sun Guo-Zhu (孙国柱), Kang Lin (康琳), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(4): 047403.
[9] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[10] Relevance vector machine technique for the inverse scattering problem
Wang Fang-Fang(王芳芳) and Zhang Ye-Rong(张业荣) . Chin. Phys. B, 2012, 21(5): 050204.
[11] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣). Chin. Phys. B, 2011, 20(3): 037302.
[12] An analytical model for coplanar waveguide on silicon-on-insulator substrate with conformal mapping technique
He Da-Wei(何大伟), Cheng Xin-Hong(程新红), Wang Zhong-Jian(王中健), Xu Da-Wei(徐大伟), Song Zhao-Rui(宋朝瑞), and Yu Yue-Hui(俞跃辉). Chin. Phys. B, 2011, 20(1): 010210.
[13] Exact solutions of the Klein--Gordon equation with Makarov potential and a recurrence relation
Zhang Min-Cang(张民仓) and Wang Zhen-Bang(王振邦). Chin. Phys. B, 2007, 16(7): 1863-1867.
[14] Study of refractive index and thickness of TiO2/ormosil planar waveguide
Wang Bao-Ling (王宝玲), Hu Li-Li (胡丽丽). Chin. Phys. B, 2004, 13(11): 1887-1891.
No Suggested Reading articles found!