Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050204    DOI: 10.1088/1674-1056/21/5/050204
GENERAL Prev   Next  

Relevance vector machine technique for the inverse scattering problem

Wang Fang-Fang(王芳芳) and Zhang Ye-Rong(张业荣)
School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  A novel method based on the relevance vector machine (RVM) for the inverse scattering problem is presented in this paper. The nonlinearity and the ill-posedness inherent in this problem are simultaneously considered. The nonlinearity is embodied in the relation between the scattered field and the target property, which can be obtained through the RVM training process. Besides, rather than utilizing regularization, the ill-posed nature of the inversion is naturally accounted for because the RVM can produce a probabilistic output. Simulation results reveal that the proposed RVM-based approach can provide comparative performances in terms of accuracy, convergence, robustness, generalization, and improved performance in terms of sparse property in comparison with the support vector machine (SVM) based approach.
Keywords:  inverse scattering problem      through-wall problem      relevance vector machine      finite-difference time-domain  
Received:  26 August 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  02.30.Zz (Inverse problems)  
  29.40.Gx (Tracking and position-sensitive detectors)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  81.70.Ex (Nondestructive testing: electromagnetic testing, eddy-current testing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61071022) and the Graduate Student Research and Innovation Program of Jiangsu Province, China (Grant No. CXZZ11-0381).

Cite this article: 

Wang Fang-Fang(王芳芳) and Zhang Ye-Rong(张业荣) Relevance vector machine technique for the inverse scattering problem 2012 Chin. Phys. B 21 050204

[1] Ferris D D and Currie N C 1999 Proc. SPIE 3577 62
[2] Baranoski E J 2008 J. Frank. Inst. 345 556
[3] Soldovieri F and Solimene R 2007 IEEE Geosc. Rem. Sens. Lett. 4 513
[4] Soldovieri F, Solimene R and Prisco G 2008 IEEE Trans. Geosci. Remot. Sens. 46 1192
[5] Chew W C and Wang Y M 1990 IEEE Trans. Med. Imag. 9 218
[6] Cui T J, Chew W C, Aydiner A A and Chen S Y 2001 IEEE Trans. Geosci. Remot. Sens. 39 339
[7] Li F H, Liu Q H and Song L P 2004 IEEE Geosc. Rem. Sens. Lett. 1 107
[8] Song L P, Yu C and Liu Q H 2005 IEEE Trans. Geosci. Remot. Sens. 43 2793
[9] Song L P, Liu Q H, Li F H and Zhang Z Q 2005 IEEE Trans. Antennas Propagat. 53 1556
[10] Zhang Z Q and Liu Q H 2004 IEEE Trans. Biomed. Eng. 51 544
[11] Smola A J and Scholkopf B 2004 Stat. Comput. 14 199
[12] Sun Z H and Jiang F 2010 Chin. Phys. B 19 110502
[13] Meng Q F, Chen Y H and Peng Y H 2009 Chin. Phys. B 18 2194
[14] Zhang Q H, Xiao B X and Zhu G Q 2007 Microwave Opt. Technol. Lett. 49 372
[15] Bermani E, Boni A, Caorsi S and Massa A 2003 IEEE Trans. Geosci. Remot. Sens. 41 927
[16] Wang F F and Zhang Y R 2011 J. Electromagn. Waves Appl. 25 75
[17] Massa A, Boni A and Donelli M 2005 IEEE Trans. Geosci. Remot. Sens. 43 2084
[18] Kim Y and Ling H 2009 IEEE Trans. Geosci. Remot. Sens. 47 1328
[19] Tipping M E 2001 J. Mach. Learn. Res. 1 211
[1] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[2] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[3] Synthesis and surface plasmon resonance of Au-ZnO Janus nanostructures
Jun Zhou(周俊), Jian-Shuo Zhang(张建烁), Guo-Yu Xian(冼国裕), Qi Qi(齐琦), Shang-Zhi Gu(顾尚志), Cheng-Min Shen(申承民), Zhao-Hua Cheng(成昭华), Sheng-Tai He(何声太), Hai-Tao Yang(杨海涛). Chin. Phys. B, 2019, 28(8): 083301.
[4] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[5] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[6] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[7] Factorization method for inverse obstacle scattering problem in three-dimensional planar acoustic waveguides
Xue Qin(秦雪). Chin. Phys. B, 2018, 27(10): 100203.
[8] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[9] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
[10] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[11] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[12] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
Wei Xiao-Kun (魏晓琨), Shao Wei (邵维), Shi Sheng-Bing (石胜兵), Zhang Yong (张勇), Wang Bing-Zhong (王秉中). Chin. Phys. B, 2015, 24(7): 070203.
[13] Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method
Wang Yue (王玥), Wang Jian-Guo (王建国), Chen Zai-Gao (陈再高). Chin. Phys. B, 2015, 24(2): 024101.
[14] Enhanced light absorption of silicon in the near-infrared band by designed gold nanostructures
Liu Ju (刘菊), Zhong Xiao-Lan (钟晓岚), Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(4): 047306.
[15] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
Liu Ya-Wen (刘亚文), Chen Yi-Wang (陈亦望), Zhang Pin (张品), Liu Zong-Xin (刘宗信). Chin. Phys. B, 2014, 23(12): 124102.
No Suggested Reading articles found!