Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 086801    DOI: 10.1088/1674-1056/23/8/086801
Special Issue: INVITED REVIEW — International Conference on Nanoscience & Technology, China 2013
INVITED REVIEW—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Dye-sensitized solar cells:Atomic scale investigation of interface structure and dynamics

Ma Wei (马薇)a b, Zhang Fan (张帆)a b, Meng Sheng (孟胜)a b
a Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto TiO2, ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron-hole recombination. Advanced experimental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and opportunities for further improvement of dye solar cells are presented.
Keywords:  dye-sensitized solar cells      interface structure      absorption      electron injection      multiple-exciton generation      charge recombination  
Received:  04 September 2013      Revised:  02 April 2014      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
Corresponding Authors:  Meng Sheng     E-mail:

Cite this article: 

Ma Wei (马薇), Zhang Fan (张帆), Meng Sheng (孟胜) Dye-sensitized solar cells:Atomic scale investigation of interface structure and dynamics 2014 Chin. Phys. B 23 086801

[1] Chapin D M, Fuller C S and Pearson G L 1954 J. Appl. Phys. 25 676
[2] O'Regan B and Grätzel M 1991 Nature 353 737
[3] Mathew S, Yella A, Gao P, Humphry-Baker R, CurchodBasile F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, NazeeruddinMd K and Grätzel M 2014 Nat. Chem. 6 242
[4] Zhang M, Wang Y, Xu M, Ma W, Li R and Wang P 2013 Energy Environ. Sci. 6 2944
[5] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[6] Davydov A A 1990 Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides (New York: Wiley)
[7] Deacon G B and Phillips R J 1980 Chem. Rev. 33 227
[8] Ben A D, Lee M, Cho S Y and List D J 1992 J. Chem. Phys. 96 8781
[9] Blumenfeld A L, Coster D J and Fripiat J J 1994 Chem. Phys. Lett. 231 491
[10] Bu Y, Shinn D W and Lin M C 1992 Surf. Sci. 276 184
[11] Chen P J and Goodman D W 1993 Surf. Sci. 297 L93
[12] Xu C and Goodman D W 1996 J. Phys. Chem. C 100 245
[13] Truong C M, Wu M C and Goodman D W 1992 J. Chem. Phys. 97 9447
[14] Bu Y and Lin M C 1994 J. Phys. Chem. C 98 7871
[15] Coenen F P, Kaestner M, Pirug G, Bonzel H P and Stimming U 1994 J. Phys. Chem. C 98 7885
[16] Henderson M A 1995 J. Phys. Chem. C 99 15253
[17] Bu Y, Ma L and Lin M C 1993 J. Phys. Chem. C 97 7081
[18] Jiao Y, Zhang F, Grätzel M and Meng S 2013 Adv. Funct. Mater. 23 424
[19] Shklover V, Ovchinnikov Y E, Braginsky L S, Zakeeruddin S M and Gratzel M 1998 Chem. Mater. 10 2533
[20] Nazeeruddin M K, Humphry-Baker R, Liska P and Gratzel M 2003 J. Phys. Chem B 107 8981
[21] De Angelis F, Fantacci S, Selloni A, Gratzel M and Nazeeruddin M K 2007 Nano Lett. 7 3189
[22] Delcamp J H, Yella A, Holcombe T W, Nazeeruddin M K and Grätzel M 2013 Ang. Chem. Int. Ed. 52 376
[23] Hagberg D P, Marinado T, Karlsson K M, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A and Sun L 2007 J. Org. Chem. 72 9550
[24] Gillaizeau-Gauthier I, Odobel F, Alebbi M, Argazzi R, Costa E, Bignozzi C A, Qu P and Meyer G J 2001 Inorg. Chem. 40 6073
[25] Connor P A and McQuillan A J 1999 Langmuir 15 2916
[26] Johansson E M J, Edvinsson T, Odelius M, Hagberg D P, Sun L, Hagfeldt A, Siegbahn H and Rensmo H 2007 J. Phys. Chem. C 111 8580
[27] Bartelt A F, Schuetz R, Strothkämper C, Schaff J, Janzen S, Reisch P, Kastl I, Ziwritsch M, Eichberger R, Fuhrmann G, Danner D, Scheller L P and Nelles G 2014 J. Phys. Chem. C 118 6612
[28] Zhang F, Shi F, Ma W, Gao F, Jiao Y, Li H, Wang J, Shan X, Lu X and Meng S 2013 J. Phys. Chem. C 117 14659
[29] De Angelis F, Fantacci S, Mosconi E, Nazeeruddin M K and Gratzel M 2011 J. Phys. Chem. C 115 8825
[30] Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M and Grätzel M 2011 Science 334 629
[31] Tian H, Yang X, Chen R, Zhang R, Hagfeldt A and Sun L 2008 J. Phys. Chem. C 112 11023
[32] Chen R, Yang X, Tian H, Wang X, Hagfeldt A and Sun L 2007 Chem. Mater. 19 4007
[33] Jiao Y, Ma W and Meng S 2013 Chem. Phys. Lett. 586 97
[34] Stier W, Duncan W R and Prezhdo O V 2004 Adv. Mater. 16 240
[35] Asbury J B, Anderson N A, Hao E, Ai X and Lian T 2003 J. Phys. Chem. B 107 7376
[36] Meng S, Ren J and Kaxiras E 2008 Nano Lett. 8 3266
[37] Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser J E, Humphry-Baker R, Zakeeruddin S M, Grätzel M and Bäuerle P 2012 Adv. Func. Mater. 22 1291
[38] Shim S H, Strasfeld D B, Fulmer E C and Zanni M T 2006 Opt. Lett. 31 838
[39] Becker W, Bergmann A, Hink M A, König K, Benndorf K and Biskup C 2004 Microsc. Res. Techniq. 63 58
[40] Beek W J E and Janssen R A J 2004 J. Mater. Chem. 14 2795
[41] Manzhos S, Segawa H and Yamashita K 2011 Chem. Phys. Lett. 501 580
[42] Persson P, Lundqvist M J, Ernstorfer R, Goddard W A and Willig F 2006 J. Chem. Theory Comput. 2 441
[43] Abuabara S G, Rego L G C and Batista V S 2005 J. Am. Chem. Soc. 127 18234
[44] Kilina S V, Kilin D S, Prezhdo V V and Prezhdo O V 2011 J. Phys. Chem. C 115 21641
[45] Li J, Nilsing M, Kondov I, Wang H, Persson P, Lunell S and Thoss M 2008 J. Phys. Chem. C 112 12326
[46] Jones D R and Troisi A 2010 Phys. Chem. Chem. Phys. 12 4625
[47] Meng S and Kaxiras E 2008 J. Chem. Phys. 129 054110
[48] Meng S and Kaxiras E 2010 Nano Lett. 10 1238
[49] Meng S and Kaxiras E 2008 Biophys. J. 95 4396
[50] Ma W, Jiao Y and Meng S 2013 Phys. Chem. Chem. Phys. 15 17187
[51] Ma W, Jiao Y and Meng S 2014 J. Phys. Chem. C, in press
[52] Meade T J, Gray H B and Winkler J R 1989 J. Am. Chem. Soc. 111 4353
[53] Anderson N A, Ai X, Chen D, Mohler D L and Lian T 2003 J. Phys. Chem. B 107 14231
[54] She C, Guo J, Irle S, Morokuma K, Mohler D L, Zabri H, Odobel F, Youm K T, Liu F, Hupp J T and Lian T 2007 J. Phys. Chem. A 111 6832
[55] Ross R T and Nozik A J 1982 J. Appl. Phys. 53 3813
[56] Tisdale W A, Williams K J, Timp B A, Norris D J, Aydil E S and Zhu X Y 2010 Science 328 1543
[57] Sambur J B, Novet T and Parkinson B A 2010 Science 330 63
[58] Gachet D, Avidan A, Pinkas I and Oron D 2009 Nano Lett. 10 164
[59] Ellingson R J, Beard M C, Johnson J C, Yu P, Micic O I, Nozik A J, Shabaev A and Efros A L 2005 Nano Lett. 5 865
[60] Murphy J E, Beard M C, Norman A G, Ahrenkiel S P, Johnson J C, Yu P, MićićO I, Ellingson R J and Nozik A J 2006 J. Am. Chem. Soc. 128 3241
[61] Schaller R D, Pietryga J M and Klimov V I 2007 Nano Lett. 7 3469
[62] Trinh M T, Houtepen A J, Schins J M, Hanrath T, Piris J, Knulst W, Goossens A P L M and Siebbeles L D A 2008 Nano Lett. 8 1713
[63] Beard M C, Midgett A G, Law M, Semonin O E, Ellingson R J and Nozik A J 2009 Nano Lett. 9 836
[64] Ji M, Park S, Connor S T, Mokari T, Cui Y and Gaffney K J 2009 Nano Lett. 9 1217
[65] Beard M C, Knutsen K P, Yu P, Luther J M, Song Q, Metzger W K, Ellingson R J and Nozik A J 2007 Nano Lett. 7 2506
[66] Yu Q, Wang Y, Yi Z, Zu N, Zhang J, Zhang M and Wang P 2010 ACS Nano 4 6032
[67] Cai M, Pan X, Liu W, Sheng J, Fang X, Zhang C, Huo Z, Tian H, Xiao S and Dai S 2013 J. Mater. Chem. A 1 4885
[68] Kley C S, Dette C, Rinke G, Patrick C E, Čechal J, Jung S J, Baur M, Durr M, Rauschenbach S, Giustino F, Stepanow S and Kern K 2014 Nano Lett. 14 563
[69] Gross L, Mohn F, Moll N, Schuler B, Criado A, Guitián E, Peña D, Gourdon A and Meyer G 2012 Science 337 1326
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[3] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[4] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[5] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[8] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[9] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[10] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[11] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[12] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[13] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[14] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[15] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
No Suggested Reading articles found!