Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017802    DOI: 10.1088/1674-1056/27/1/017802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer

Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超)
College of Physics Science & Technology, Hebei Key Laboratory of Optic-Electronic Information and Materials, Hebei University, Baoding 071002, China
Abstract  A blue phosphor was obtained by doping Eu2+ into a multi-cation host Sr0.8Ca0.2Al2Si2O8 through high temperature solid state reaction. The emission spectra show a continuous red-shift behavior from 413 nm to 435 nm with Eu2+ concentration increasing. The substitution priority of Eu2+ in Sr0.8Ca0.2Al2Si2O8 was investigated via x-ray diffraction (XRD) and temperature properties in detail:the Ca2+ ions are preferentially substituted by Eu2+at lower doping, and with the Eu2+ concentration increasing, the probability of substitution for Sr2+ is greater than that of replacing Ca2+. Accordingly, we propose the underlying method of thermal property to determine the substitution of Eu2+ in the multi-cation hosts. Moreover, the abnormal increase of emission intensity with increasing temperature was studied by the thermoluminescence spectra. The energy transfer mechanism between the Eu2+ ions occupying different cation sites was studied by the lifetime decay curves. A series of warm white light emitting diodes were successfully fabricated using the blue phosphors Sr0.8Ca0.2Al2Si2O8:Eu2+ with commercial red phosphor (Ca Sr)SiAlN3:Eu2+ and green phosphor (Y Lu)3Al5O12:Ce3+, and the luminescent efficiency can reach 45 lm/W.
Keywords:  luminescence      phosphors      energy transfer      substitution priority  
Received:  24 July 2017      Revised:  09 October 2017      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  33.20.Kf (Visible spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672066 and 50902042), Funds for Distinguished Young Scientists of Hebei Province, China (Grant No. A2015201129), and Personnel Training Project of Hebei Province, China (Grant No. A2016002013).
Corresponding Authors:  Zhi-Jun Wang, Pan-Lai Li     E-mail:  wangzj1998@126.com;li_panlai@126.com

Cite this article: 

Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超) Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer 2018 Chin. Phys. B 27 017802

[1] Zhou T L, Song Z, Song X P, Bian L and Liu Q L 2010 Chin. Phys. B 19 127808
[2] Huang P, Cui C E and Wang S 2009 Chin. Phys. B 18 4524
[3] Xie W, Wang Y H, Hu Y H, Wu H Y, Deng L Y and Liao F 2010 Acta Phys. Sin. 59 1148 (in Chinese)
[4] Jiang Z Q, Wang Y H and Gong Y 2010 Chin. Phys. B 19 027801
[5] Zhang J C, Qin Q S, Yu M H, Zhou H L and Zhou M J 2011 Chin. Phys. B 20 094211
[6] Li P L, Xu Z, Zhao S L, Wang Y S and Zhang F J 2012 Chin. Phys. B 21 047803
[7] Dai P P, Cao J, Zhang X T and Liu Y C 2016 J. Phys. Chem. C 120 18713
[8] Ji H P, Wang L, Molokeev M S, Hirosaki N, Xie R J, Huang Z H, Xia Z G, ten Kate O M, Liu L H and Atuchin V V 2016 J. Mater. Chem. C 4 6855
[9] He L Z, Song Z, Xiang Q C, Xia Z G and Liu Q L 2016 J. Lumin. 180 163
[10] Ji H P, Huang Z H, Xia Z G, Molokeev M S, Atuchin V V. Fang M H and Liu Y G 2015 J. Phys. Chem. C 119 2038
[11] Huang C H, Wu P J, Lee J F and Chen T M 2011 J. Mater. Chem. C 21 10489
[12] Li K, Shang M M, Lian H Z and Lin J 2015 Inorg. Chem. 54 7992
[13] Park W B, Singh S P and Sohn K S 2014 J. Am. Chem. Soc. 136 2363
[14] Denault K A, Brgoch J, Gaultois M W, Mikhailovsky A, Petry R, Winkler H, DenBaars S P and Seshadri R 2014 Chem. Mater. 26 2275
[15] Li G G, Lin C C, Chen W T, Molokeev M S, Atuchin V V, Chiang C Y, Zhou W Z, Wang C W and Li W H 2014 Chem. Mater. 26 2991
[16] Wang S S, Chen W T, Li Y, Wang J, Sheu H S and Liu R S 2013 J. Am. Chem. Soc. 135 12504
[17] Tsai Y T, Chiang C Y, Zhou W, Lee J F, Sheu H S and Liu R S 2015 J. Am. Chem. Soc. 137 8936
[18] Im W B, George N, Kurzman J, Brinkley S, Mikhailovsky A, Hu J, Chmelka B F, DenBaars S P and Seshadri R 2011 Adv. Mater. 23 2300
[19] Li G G, Tian Y, Zhao Y and Lin J 2015 Chem. Soc. Rev. 44 8688
[20] Xia Y F, Chen J, Liu Y G, Molokeev M S, Guan M, Huang Z H and Fang M H 2016 Dalton. Trans. 45 1007
[21] Chen D Q, Zhou Y, Xu W, Zhong J S, Ji Z and Xiang W D 2016 J. Mater. Chem. C 4 1704
[22] Li K, Xu J, Cai X C, Fan J, Zhang Y, Shang M M, Lian H Z and Lin J 2015 J. Mater. Chem. C. 3 6341
[23] Bai Z H, Gong B Y, Tian Y G, Zhang Q and Song C 2008 J. Chin. Ceram. Soc. 36 1753
[24] Woo K G, Lee J H, Kim M H and Lee Y J 2004 Inform. Software. Tech. 46 255
[25] Hakeem D K and Park K 2015 New J. Chem. 39 7768
[26] Jiang Z Q, Wang Y H, Wang L S 2010 J. Electro. Chem. 157 J155
[27] Jia Y L, Pang R, Li H F, Sun W Z, Fu J P, Jiang L H and Liu R S 2015 Dalton. Trans. 44 11399
[28] Ma M X, Zhu D C, Zhao C, Han T, Cao S X and Tu M J 2012 Opt. Commun. 285 665
[29] Wegh R T, Donker H, Oskam K D and Meijerink A 1999 J. Lumin. 82 93
[30] Ding X, Xu Y and Guo C F 2010 Acta Phys. Sin. 59 6632 (in Chinese)
[31] Wang X C, Zhao Z Y, Wu Q S, Li Y Y, Wang C, Mao A J and Wang Y H 2015 Dalton. Trans. 44 11057
[32] Li K, Geng D L, Shang M M, Zhang Y, Lian H Z and Lin J 2014 J. Phys. Chem. C 118 11026
[33] Jang H S, Im W B, Lee D C, Jeon D Yand Kim S K 2007 J. Lumin. 126 371
[34] Shang M M, Li C X and Lin J 2014 Chem. Soc. Rev. 43 1372
[35] Yuan L L, Zhang X S, Xu J P, Sun J, Jin H, Liu X J, Li L L and Li L 2015 Chin. Phys. B 24 087802
[36] Lu F, Zhang X H, Lu Z M, Xu X W and Tang C C 2012 Acta Phys. Sin. 61 144209 (in Chinese)
[37] Kim J S, Park Y H, Choi J C, Park H L, Kim G C and Yoo J K 2006 Solid State Commun. 137 187
[38] Qin C X, Huang Y L, Shi L, Chn G Q, Qiao X B and Seo H J 2009 Appl. Phys. 42 185105.
[39] Xu S Y, Zhang X S, Zhou Y L, Xi Q and Li L 2011 Chin. Phys. B 20 037804
[40] Zhang J C, Zhou M J and Wang Y H 2012 Chin. Phys. B 21 124102
[41] Chen J Y, Zhang N M, Guo C F, Pan F J, Zhou X J, Suo H, Zhao X Q and Goldys E M 2016 ACS Appl. Mater. Interfaces 8 20856
[42] Sharma G, Lochab S P and Singh N 2010 J. Alloys Compd. 501 190
[43] Wu L, Wang B, Zhang Y, Li L, Wang H R, Yi H, Kong Y F and Xu J J 2014 Dalton. Trans. 43 13845
[44] Li P L, Wang Y S, Zhao S L, Zhang F J and Xu Z 2012 Chin. Phys. B 21 127804
[45] Cao S X, Han T and Tu M J 2011 Acta Phys. Sin. 60 127802 (in Chinese)
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[6] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[7] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[8] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[9] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[10] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[11] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[12] Enhancing the photo-luminescence stability of CH3NH3PbI3 film with ionic liquids
Weifeng Ma(马威峰), Chunjie Ding(丁春杰), Nasrullah Wazir, Xianshuang Wang(王宪双), Denan Kong(孔德男), An Li(李安), Bingsuo Zou(邹炳锁), and Ruibin Liu(刘瑞斌). Chin. Phys. B, 2022, 31(3): 037802.
[13] Luminescent characteristics of Tm3+/Tb3+/Eu3+ tri-doped Na5Y9F32 single crystals for white emission with high thermal stability
Lizhi Fang(方立志), Xiong Zhou(周雄), Zhiwei Zhao(赵志伟), Biao Zheng(郑标), Haiping Xia(夏海平), Jun Wang(王军), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2022, 31(12): 127802.
[14] Laser-modified luminescence for optical data storage
Xin Wei(魏鑫), Weiwei Zhao(赵伟玮), Ting Zheng(郑婷), Junpeng Lü(吕俊鹏), Xueyong Yuan(袁学勇), and Zhenhua Ni(倪振华). Chin. Phys. B, 2022, 31(11): 117901.
[15] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
No Suggested Reading articles found!