Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097802    DOI: 10.1088/1674-1056/26/9/097802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optical response of tunable terahertz plasmon in a grating-gated graphene transistor

Bo Yan(闫博)1,2,3, Jingyue Fang(方靖岳)2, Shiqiao Qin(秦石乔)2, Yongtao Liu(刘永涛)3, Li Chen(陈力)1, Shuang Chen(陈爽)1, Renbing Li(李仁兵)1, Zhen Han(韩震)1
1 China Aerodynamics Research and Development Center, Mianyang 621000, China;
2 College of Science, National University of Defense Technology, Changsha 410073, China;
3 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  Tunable terahertz plasmon in a graphene-based device with a grating serving as a top gate is studied. Transmission spectra exhibit a distinct peak in the terahertz region when the terahertz electric field is perpendicular to the grating fingers. Our results show that the extinction in the transmission of single-layer graphene shields beyond 80%. Electronic results further show that the graphene plasmon can be weakly adjusted by tuning the gate voltage. Theoretical calculation also implies that the plasmon frequency of graphene can fall into the terahertz region of 1-2 THz by improving the sustaining ability and capacitance of the top gate.
Keywords:  graphene plasmon      Lorentz      terahertz time-domain spectroscopy      electrical measurement  
Received:  17 April 2017      Revised:  10 June 2017      Accepted manuscript online: 
PACS:  78.67.Wj (Optical properties of graphene)  
  87.50.U (Millimeter/terahertz fields effects)  
  72.80.Vp (Electronic transport in graphene)  
  52.40.-w (Plasma interactions (nonlaser))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11272337), the Research Project of National University of Defense Technology, China (Grant No. ZK16-03-34), the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3021), and the Open Project of Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences (Grant No. 15ZS03).
Corresponding Authors:  Jingyue Fang     E-mail:  fjynudt@aliyun.com

Cite this article: 

Bo Yan(闫博), Jingyue Fang(方靖岳), Shiqiao Qin(秦石乔), Yongtao Liu(刘永涛), Li Chen(陈力), Shuang Chen(陈爽), Renbing Li(李仁兵), Zhen Han(韩震) Optical response of tunable terahertz plasmon in a grating-gated graphene transistor 2017 Chin. Phys. B 26 097802

[1] Chen H T, Padilla W J, Zide Joshua M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597
[2] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1494
[3] Wu H Q, Linghu C Y, Lu H M and Qian H 2013 Chin. Phys. B 22 098106
[6] Ryzhii V 2006 Jpn. J. Appl. Phys. 45 923
[7] Hwang E H and Sarma S D 2007 Phys. Rev. B 75 205418
[8] Yan B, Yang X X, Fang J Y, Huang Y D, Qin H and Qin S Q 2015 Chin. Phys. B 24 015203
[4] Marinko J and Hrvoje B 2009 Phys. Rev. B 80 245435
[5] Ryzhii V, Satou A and Otsuji T 2007 J. Appl. Phys. 101 024509
[9] Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photonics 6 749
[10] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 11 865
[12] Yan B, Fang J Y, Qin S Q, Liu Y T, Zhou Y Q, Li R B and Zhang X A 2015 Appl. Phys. Lett. 107 191905
[11] Marco F, Alexander U, Andreas P, Govinda L, Karl U, Hermann D, Pavel K, Aaron M, Werner S, Gottfried S and Thomas M 2012 Nano Lett. 12 2773
[13] Nicolas U, Iris C, Julien L, Ievgeniia O N, Felix F, Michl K, Thomas S and Alexey B K 2013 Opt. Express 21 24736
[14] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[15] Tu Z Q, Liu Z C, Li Y F, Yang F, Zhang L Q, Zhao Z, Xu C M, Wu S F, Liu H W, Yang H T and Richard P 2014 Carbon 73 252
[16] Lee B, Park S Y, Kim H C, Cho K, Vogel E M, Kim M J, Wallace R M and Kim J 2008 Appl. Phys. Lett. 92 203102
[17] Zhu X L, Yan W Jepsen P U, Hansen O, Mortensen N A Xiao S S, Jackson R and Graham S 2013 Appl. Phys. Lett. 102 131101
[18] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E and Banerjee S K 2009 Appl. Phys. Lett. 94 062107
[19] Sambonsuge S, Jiao S, Nagasawa H, Fukidome H, Filimonov S N and Suemitsu M 2016 Diam. Relat. Mater. 67 51
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[3] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[4] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[5] A new nonlinear photoconductive terahertz radiation source based on photon-activated charge domain quenched mode
Wei Shi(施卫), Rujun Liu(刘如军), Chengang Dong(董陈岗), Cheng Ma(马成). Chin. Phys. B, 2020, 29(7): 078704.
[6] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[7] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[8] Multiple reversals of vortex ratchet effects in a superconducting strip with inclined dynamic pinning landscape
An He(何安) and Cun Xue(薛存). Chin. Phys. B, 2020, 29(12): 127401.
[9] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[10] Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy
Yuan-Yuan Ma(马媛媛), Hao-Chong Huang(黄昊翀), Si-Bo Hao(郝思博), Wei-Chong Tang(汤伟冲), Zhi-Yuan Zheng(郑志远), Zi-Li Zhang(张自力). Chin. Phys. B, 2019, 28(6): 060702.
[11] Plasmon reflection reveals local electronic properties of natural graphene wrinkles
Runkun Chen(陈闰堃), Cui Yang(杨翠), Yuping Jia(贾玉萍), Liwei Guo(郭丽伟), Jianing Chen(陈佳宁). Chin. Phys. B, 2019, 28(11): 117302.
[12] Ultra-compact graphene plasmonic filter integrated in a waveguide
Baoxin Liao(廖宝鑫), Xiangdong Guo(郭相东), Hai Hu(胡海), Ning Liu(刘宁), Ke Chen(陈科), Xiaoxia Yang(杨晓霞), Qing Dai(戴庆). Chin. Phys. B, 2018, 27(9): 094101.
[13] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
[14] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[15] Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit
Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉). Chin. Phys. B, 2017, 26(9): 094202.
No Suggested Reading articles found!