Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 089201    DOI: 10.1088/1674-1056/26/8/089201
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Revisit to frozen-in property of vorticity

Shuai Yang(杨帅)1,2, Qun-Jie Zuo(左群杰)1, Shou-Ting Gao(高守亭)1,3
1 Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
2 Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (PAEKL), Chengdu University of Information Technology, Chengdu 610225, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Considering some simple topological properties of vorticity vector, the frozen-in property of vorticity herein is revisited. A vortex line, as is analogous to velocity vector along a streamline, is defined as such a coincident material (curve) line that connects many material fluid elements, on which the local vorticity vector for each fluid element is also tangent to the vortex line. The vortex line evolves in the same manner as the material line that it is initially associated with. The vortex line and the material line are both oriented to the same directions, and evolve with the proportional magnitude, just like being ‘frozen’ or ‘glued’ to the material elements of the fluid under the barotropic assumption. To relax the limits of incompressible and barotropic atmosphere, the frozen-in property is further derived and proved in the baroclinic case. Then two effective usages are given as examples. One is the derivation of potential vorticity conservation from the frozen-in property in both barotropic and baroclinic atmospheres, as a theory application, and the other is used to illuminate the vorticity generation and growth in ideal cases and real severe weather process, e.g., in squall line, tornado, and other severe convection weather with vortex. There is no necessity to derive vorticity equation, and this method is very intuitive to explain vorticity development qualitatively, especially for fast analysis for forecasters. Certainly, by investigating the evolution of vortex line, it is possible to locate the associated line element vector and its development on the basis of the frozen-in property of vorticity. Because it is simple and visualized, it manifests broad application prospects.

Keywords:  vortex      frozen-in property      material line element      baroclinic fluid  
Received:  30 March 2017      Revised:  27 April 2017      Accepted manuscript online: 
PACS:  92.70.Gt (Climate dynamics)  
  92.70.Cp (Atmosphere)  
  92.60.Qx (Storms)  
Fund: 

Project supported by the Special Scientific Research Fund of the Meteorological Public Welfare of the Ministry of Sciences and Technology, China (Grant No. GYHY201406003), the Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, China (Grant No. PAEKL-2015-K3), and the National Natural Science Foundation of China (Grant Nos. 41375054, 41575064, 91437215, 41405055 and 41375052).

Corresponding Authors:  Qun-Jie Zuo     E-mail:  zqj@mail.iap.ac.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Shuai Yang(杨帅), Qun-Jie Zuo(左群杰), Shou-Ting Gao(高守亭) Revisit to frozen-in property of vorticity 2017 Chin. Phys. B 26 089201

[1] Tao S Y 1980 Rainstorms in China (Beijing: Science Press) p. 225
[2] Fu S M, Li W L, Sun J H, Zhang J P and Zhang Y C 2014 Atmos. Sci. Lett. doi:10.1002/asl2. 533 1
[3] Weisman M L 1993 J. Atmos. Sci. 50 645
[4] Weisman M L and Davis C A 1998 J. Atmos. Sci. 55 2603
[5] Atkins N T, Arnott J M, Przybylinski R W, Wolf R A and Ketcham B D 2004 Mon. Wea. Rev. 132 2224
[6] Meng Z Y, Zhang F Q, Markowski P, Wu D C and Zhao K 2012 J. Atmos. Sci. 69 1182
[7] Villis GK 2006 Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation (Cambridge: Cambridge University Press) p. 168
[8] Yang S and Gao S T 2014 Chin. Phys. B 23 119201
[9] Xu X, Xue M and Wang Y 2015 J. Atmos. Sci. 72 1963
[10] Xu X, Xue M and Wang Y 2015 Mon. Wea. Rev. 143 2266
[11] Ertel H 1942 Meteorol Z. 59 277
[12] Wu G X and Liu H Z 1998 Dynam. Atmos. Oceans. 27 715
[13] Liu Y M, Liu H, Liu P and Wu G X 1999 Acta Meteorol. Sin. 57 385 (in Chinese)
[14] Hoskins B J, McIntyre M E and Robertson A W 1985 Quart. J. Roy. Meteorol. Soc. 111 877
[15] McIntyre M E and Norton W A 1991 J. Atmos. Sci. 57 1214
[16] Montgomery M T and Farrell B F 1993 J. Atmos. Sci. 50 285
[17] Ertel H and Rossby C C 1949 Pure Appl. Geophys. 14 189
[18] Yang S, Gao S T and Chen B 2013 Sci. China-Earth. Sci. 43 1788 (in Chinese)
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[5] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[6] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[7] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[8] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[9] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[13] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[14] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[15] Designing current-strain-assisted superconductor-ferromagnet multi-bit memories
Hasnain Mehdi Jafri, Jing Wang(王静), Xiao-Ming Shi(施小明), De-Shan Liang(梁德山), and Hou-Bing Huang(黄厚兵). Chin. Phys. B, 2022, 31(11): 118501.
No Suggested Reading articles found!