Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 086202    DOI: 10.1088/1674-1056/26/8/086202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Proton radiation effect on GaAs/AlGaAs core-shell ensemble nanowires photo-detector

Li-Ying Tan(谭丽英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶)
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract  

We demonstrate that the GaAs/AlGaAs nanowires (NWs) ensemble is fabricated into photo-detectors. Current-voltage (I-V) characteristics are measured on GaAs/AlGaAs core-shell ensemble NW photo-detectors at room-temperature before and after 1-MeV proton irradiation with fluences from 1.0×1013 cm-2 to 5.0×1014 cm-2. The degradation of photocurrent suggests that the point defects induced by proton radiation could cause both carrier lifetime and carrier mobility to decrease synchronously. Comparing with a GaAs quantum well, the degradations of light and dark current for the irradiated NWs photo-detector indicate that NWs material is a preferable potential candidate for space applications.

Keywords:  radiation effect      lifetime damage coefficient      mobility damage coefficient      radiation damage  
Received:  22 March 2017      Revised:  16 April 2017      Accepted manuscript online: 
PACS:  62.23.Hj (Nanowires)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
Corresponding Authors:  Fa-Jun Li     E-mail:  lifajun1201@gmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Li-Ying Tan(谭丽英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶) Proton radiation effect on GaAs/AlGaAs core-shell ensemble nanowires photo-detector 2017 Chin. Phys. B 26 086202

[1] Kato T, Susawa H, Hirotani M, Saka T, Ohashi Y, Shichi E and Shibata S 1991 J. Cryst. Growth 107 832
[2] Stettner T, Zimmermann P, Loitsch B, Doblinger M, Regler A, Mayer B, Winnerl J, Matich S, Riedl H, Kaniber M, Abstreiter G, Koblmuller G and Finley J J 2016 Appl. Phys. Lett. 108 5
[3] Wei W, Liu Y G, Zhang X, Wang Z and Ren X M 2014 Appl. Phys. Lett. 104 4
[4] Badada B H, Shi T, Jackson H E, Smith L M, Zheng C L, Etheridge J, Gao Q, Tan H H and Jagadish C 2015 Nano Lett. 15 7847
[5] Aberg I, Vescovi G, Asoli D, Naseem U, Gilboy J P, Sundvall C, Dahlgren A, Svensson K E, Anttu N, Bjork M T and Samuelson L 2016 IEEE J. Photovolt. 6 185
[6] Seyedi M A, Yao M, O'Brien J, Wang S Y and Dapkus P D 2013 Appl. Phys. Lett. 103 4
[7] Seyedi M A, Yao M, O'Brien J, Wang S Y and Dapkus P D 2014 Appl. Phys. Lett. 105 3
[8] Yamaguchi M 2001 Solar Energy Mater. Solar Cells 68 31
[9] Mitchell B, Trupke T, Weber J W and Nyhus J 2011 J. Appl. Phys. 109 12
[10] Marcinkevicius S, Leon R, Cechavicius B, Siegert J, Lobo C, Magness B and Taylor W 2002 Physica B 314 203
[11] Ma L Y, Li Y D, Guo Q, Ai E K, Wang H J, Wang B and Zeng J Z 2015 Acta Phys. Sin. 64 154217 (in Chinese)
[12] Zhou Y P, Li F J, Che C, Tan L Y, Ran Q W, Yu S Y and Ma J 2014 Acta Phys. Sin. 63 148501 (in Chinese)
[13] Li F J, Tan L Y and Zhou Y P 2014 Appl. Mech. Mater. 556-562 5163
[14] Andrievski R A 2014 Uspekhi Fizicheskikh Nauk 184 1017
[15] Shen T 2008 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 921
[16] Tan H, Williams J, Jagadish C, Burke P and Gal M 1996 Appl. Phys. Lett. 68 2401
[17] Tan H H and Jagadish C 1997 Appl. Phys. Lett. 71 2680
[18] Fu L, Tan H H, Johnston M B, Gal M and Jagadish C 1999 J. Appl. Phys. 85 6786
[19] Joyce H J, Parkinson P, Jiang N, Docherty C J, Gao Q, Tan H H, Jagadish C, Herz L M and Johnston M B 2014 Nano Lett. 14 5989
[20] Jiang N, Gao Q, Parkinson P, Wong-Leung J, Mokkapati S, Breuer S, Tan H, Zheng C, Etheridge J and Jagadish C 2013 Nano Lett. 13 5135
[21] Fajun Li, Ziyuan Li, Liying Tan, Yanping Zhou, Jing Ma, Lysevych Mykhaylo, Lan Fu, Hark Hoe Tan and Jagadish C 2017 Nanotechnology 28 125702
[22] Levine B 1993 J. Appl. Phys. 74 R1
[23] Claeys C and Simoen E 2013 Radiation effects in advanced semiconductor materials and devices (New York: Springer Science & Business Media 33)
[24] Pease R L, Enlow E W, Dinger G L and Marshall P 1987 IEEE Trans. Nucl. Sci. 34 1140
[25] Parenteau M, Carlone C, Morris D and Khanna S M 1997 IEEE Trans. Nucl. Sci. 44 1849
[26] Khanna S, Liu H, Wilson P, Li L and Buchanan M 1996 IEEE Trans. Nucl. Sci. 43 3012
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[3] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[4] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[5] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[6] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[7] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[8] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[9] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[10] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[11] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[12] Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发). Chin. Phys. B, 2018, 27(3): 036102.
[13] Bulk and surface damages in complementary bipolar junction transistors produced by high dose irradiation
J Assaf. Chin. Phys. B, 2018, 27(1): 016103.
[14] Ionizing radiation effect on single event upset sensitivity of ferroelectric random access memory
Jia-Nan Wei(魏佳男), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Yin-Hong Luo(罗尹虹), Li-Li Ding(丁李利), Xiao-Yu Pan(潘霄宇), Yang Zhang(张阳), Yu-Hui Liu(刘玉辉). Chin. Phys. B, 2017, 26(9): 096102.
[15] An investigation of ionizing radiation damage in different SiGe processes
Pei Li(李培), Mo-Han Liu(刘默寒), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Jin-Xin Zhang(张晋新), Ting Ma(马婷). Chin. Phys. B, 2017, 26(8): 088503.
No Suggested Reading articles found!