|
|
Effect of Ni and vacancy concentration on initial formation of Cu precipitate in Fe-Cu-Ni ternary alloys by molecular dynamics simulation |
Ke Liu(刘珂), Li-Juan Hu(胡丽娟), Qiao-Feng Zhang(张巧凤), Yao-Ping Xie(谢耀平), Chao Gao(高超), Hai-Ying Dong(董海英), Wan-Yi Liang(梁婉怡) |
Key Laboratory for Microstructures and Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China |
|
|
Abstract In the present work, the effects of Ni atoms and vacancy concentrations (0.1%, 0.5%, 1.0%) on the formation process of Cu solute clusters are investigated for Fe-1.24%Cu-0.62%Ni alloys by molecular dynamics (MD) simulations. The presence of Ni is beneficial to the nucleation of Cu precipitates and has little effect on coarsening rate in the later stage of aging. This result is caused by reducing the diffusion coefficient of Cu clusters and the dynamic migration of Ni atoms. Additionally, there are little effects of Ni on Cu precipitates as the vacancy concentration reaches up to 1.0%, thereby explaining the embrittlement for reactor pressure vessel (RPV) steel. As a result, the findings can hopefully provide the important information about the essential mechanism of Cu cluster formation and a better understanding of ageing phenomenon of RPV steel. Furthermore, these original results are analyzed with a simple model of Cu diffusion, which suggests that the same behavior could be observed in Cu-containing alloys.
|
Received: 13 January 2017
Revised: 04 May 2017
Accepted manuscript online:
|
PACS:
|
36.40.-c
|
(Atomic and molecular clusters)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
02.70.Ns
|
(Molecular dynamics and particle methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51301102) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 15ZR1416000). |
Corresponding Authors:
Li-Juan Hu
E-mail: lijuanhu@shu.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Ke Liu(刘珂), Li-Juan Hu(胡丽娟), Qiao-Feng Zhang(张巧凤), Yao-Ping Xie(谢耀平), Chao Gao(高超), Hai-Ying Dong(董海英), Wan-Yi Liang(梁婉怡) Effect of Ni and vacancy concentration on initial formation of Cu precipitate in Fe-Cu-Ni ternary alloys by molecular dynamics simulation 2017 Chin. Phys. B 26 083601
|
[1] |
Odette G and Lucas G 2001 JOM 53 18
|
[2] |
Nagai Y, Tang Z, Hassegawa M, Kanai T and Saneyasu M 2001 Phys. Rev. B 63 134110
|
[3] |
Dubuisson P, Schill R, Hugon M, Grislin I, Seran J, Nanstad R, Hamilton M, Garner F and Kumar A 1999 ASTM STP 1325 882
|
[4] |
Yu X M and Zhao S J 2013 Acta Metall. Sin. 49 569 (in Chinese)
|
[5] |
Yang G, Wang J X and Yang M X 2012 T. Mater. Heat Treat. 33 51
|
[6] |
Liu Q D, Gu J F and Li C W 2014 J. Mater. Res. 29 950
|
[7] |
Liu Q D and Zhao S J 2013 Metall. Mater. Trans. A 44 163
|
[8] |
Fine M, Liu J and Asta M 2007 Mater. Sci. Eng. A 463 271
|
[9] |
Monzen R, Iguchi M and Jenkins M 2000 Philos. Mag. Lett. 80 137
|
[10] |
Osamura K, Okuda H, Takashima M, Asano K and Furusaka M 1993 Mater. Trans. JIM 34 305
|
[11] |
Othen P, Jenkins M and Smith G 1994 Philos. Mag. A 70 1
|
[12] |
Liu F, Zhou B, Peng J C and Wang J A 2013 Acta Metallurgica Sinica 26 707
|
[13] |
Kamada Y, Takahashi S, Kikuchi H, Kobayashi S, Ara K, Echigoya J, Tozawa Y and Watanabe K 2009 J. Mater. Sci. 44 949
|
[14] |
Ghosh A, Mishra B, Das S and Chatterjee S 2005 Metall. Mater. Trans. A 36 703
|
[15] |
Primig S, Stechauner G and Kozeschnik E 2017 Steel Res. Int. 88
|
[16] |
Ludwig M, Farkas D, Pedraza D and Schmauder S 1998 Modell. Simul. Mater. Sci. Eng. 6 19
|
[17] |
Molnar D, Niedermeier C, Mora A, Binkele P and Schmauder S 2012 Continuum Mech. Thermodyn. 24 607
|
[18] |
Molnar D, Mukherjee R, Choudhury A, Mora A, Binkele P, Selzer M, Nestler B and Schmauder S 2012 Acta Mater. 60 6961
|
[19] |
Seko A, Odagaki N, Nishitani S R, Tanaka I and Adachi H 2004 Mater. Trans. 45 1978
|
[20] |
Soisson F, Barbu A and Martin G 1996 Acta Mater. 44 3789
|
[21] |
Cerezo A, Hirosawa S, Rozdilsky I and Smith G 2003 Philos. Trans. R. Soc. London, Ser. A 361 463
|
[22] |
Monasterio P, Wirth B and Odette G 2007 J. Nucl. Mater. 361 127
|
[23] |
Blackstock J and Ackland G 2001 Philos. Mag. A 81 2127
|
[24] |
Ackland G, Bacon D, Calder A and Harry T 1997 Philos. Mag. A 75 713
|
[25] |
Domain C and Becquart C 2001 Phys. Rev. B 65 024103
|
[26] |
Liu J Z, Van De Walle A, Ghosh G and Asta M 2005 Phys. Rev. B 72 144109
|
[27] |
Marian J, Wirth B, Odette G and Perlado J 2004 Comput. Mater. Sci. 31 347
|
[28] |
Gao N, Wei K F, Zhang S X and Wang Z G 2012 Chin. Phys. Lett. 29 096102
|
[29] |
Bergner F, Lambrecht M, Ulbricht A and Almazouzi A 2010 J. Nucl. Mater. 399 129
|
[30] |
Nagai Y, Takadate K, Tang Z, Ohkubo H, Sunaga H, Takizawa H and Hasegawa M 2003 Phys. Rev. B 67 224202
|
[31] |
Xu Q, Yoshiie T and Sato K 2006 Phys. Rev. B 73 134115
|
[32] |
Miller M, Wirth B and Odette G 2003 Mater. Sci. Eng. A 353 133
|
[33] |
Zhang C, Enomoto M, Yamashita T and Sano N 2004 Metall. Mater. Trans. A 35 1263
|
[34] |
Al-Motasem A, Posselt M and Bergner F 2011 J. Nucl. Mater. 418 215
|
[35] |
Bonny G, Pasianot R C, Castin N and Malerba L 2009 Philos. Mag. 89 3531
|
[36] |
Osamura K, Okuda H, Asano K, Furusaka M, Kishida K, Kurosawa F and Uemori R 1994 ISIJ Int. 34 346
|
[37] |
Zhu L S and Zhao S J 2014 Chin. Phys. B 23 063601
|
[38] |
Zhang C and Enomoto M 2006 Acta Mater. 54 4183
|
[39] |
Osetsky Y N and Serra A 1997 Philos. Mag. A 75 1097
|
[40] |
Wang Y, Hou H Y, Liu X B, Wang R S and Wang J T 2012 arXiv preprint arXiv: 1212.6900
|
[41] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[42] |
Soisson F and Fu C C 2007 Phys. Rev. B 76 214102
|
[43] |
Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012
|
[44] |
Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
|
[45] |
Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
|
[46] |
Miller M K 2012 Atom probe tomography: analysis at the atomic level, (Springer Science & Business Media)
|
[47] |
Wei X R abd Zhao S J 2013 Shanghai Metals 35 5-8+35
|
[48] |
Kittel C 2004 Introduction to Solid State physics (Wiley)
|
[49] |
Al-Motasem A, Posselt M, Bergner F and Birkenheuer U 2011 J. Nucl. Mater. 414 161
|
[50] |
Isheim D, Gagliano M S, Fine M E and Seidman D N 2006 Acta Mater. 54 841
|
[51] |
Pareige P, Russell K and Miller M 1996 Appl. Surf. Sci. 94 362
|
[52] |
Murthy A S, Medvedeva J E, Isheim D, Lekakh S L, Richards V L and Van Aken D C 2012 Scr. Mater. 66 943
|
[53] |
Koyama T, Hashimoto K and Onodera H 2006 Mater. Trans. 47 2765
|
[54] |
Xie Y P and Zhao S J 2012 Comput. Mater. Sci. 63 329
|
[55] |
Hyde J, Sha G, Marquis E, Morley A, Wilford K and Williams T 2011 Ultramicroscopy 111 664
|
[56] |
Schober H, Petry W and Trampenau J 1992 J. Phys.: Condens. Matter 4 9321
|
[57] |
Vincent E, Becquart C and Domain C 2006 J. Nucl. Mater. 351 88
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|