Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 083104    DOI: 0.1088/1674-1056/26/8/083104
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Wetting and coalescence of the liquid metal on the metal substrate

Zhen-Yang Zhao(赵珍阳), Tao Li(李涛), Yun-Rui Duan(段云瑞), Zhi-Chao Wang(王志超), Hui Li(李辉)
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  

Molecular dynamics (MD) simulations are performed to investigate the wettability of liquid metal on the metal substrate. Results show that there exists different wettability on the different metal substrates, which is mainly determined by the interaction between the liquid and the substrate. The liquid metal is more likely to wet the same kind of metal substrate, which attracts the liquid metal to one side on the hybrid substrate. Exchanging the liquid metal and substrate metal has no effect on the wettability between these two metals. Moreover, the study of metal drop coalescing indicates that the metal substrate can significantly affect the coalescence behavior, in which the changeable wettability of liquid metal plays a predominant role. These studies demonstrate that the wetting behavior of liquid metal can be controlled by choosing the suitable metal substrate.

Keywords:  molecular dynamics (MD) simulations      liquid metal      wettability      coalescence  
Received:  08 March 2016      Revised:  25 April 2017      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  68.08.-p (Liquid-solid interfaces)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51671114), the Special Funding in the Project of the Taishan Scholar Construction Engineering, and the National Key Research Program of China (Grant No. 2016YFB0300501).

Corresponding Authors:  Hui Li     E-mail:  lihuilmy@hotmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Zhen-Yang Zhao(赵珍阳), Tao Li(李涛), Yun-Rui Duan(段云瑞), Zhi-Chao Wang(王志超), Hui Li(李辉) Wetting and coalescence of the liquid metal on the metal substrate 2017 Chin. Phys. B 26 083104

[1] Baret J C and Brinkmann M 2006 Phys. Rev. Lett. 96 146106
[2] Chen K Y, Ivashenko O, Carroll G T, Robertus J, Kistemaker J C M, London G, Browne W R, Rudolf P and Feringa B L 2014 J. Am. Chem. Soc. 136 3219
[3] Barthlott W and Neinhuis C 1997 Planta 202 1
[4] Feng X J and Jiang L 2006 Adv. Mater. 18 3063
[5] Tsougeni K, Vourdas N, Tserepi A, Gogolides E and Cardinaud C 2009 Langmuir 25 11748
[6] Nakajima A, Fujishima A, Hashimoto K and Watanabe T 1999 Adv. Mater. 11 1365
[7] Joung Y S and Buie C R 2015 ACS Appl. Mater. Interfaces 7 20100
[8] Rivier N 1993 J. Non-Cryst. Solids 153 458
[9] Shibuya M and Miyauchi M 2009 Adv. Mater. 21 1373
[10] Feng X J, Feng L, Jin M H, Zhai J, Jiang L and Zhu D B 2004 J. Am. Chem. Soc. 126 62
[11] Spagnol V, Cachet H, Baroux B and Sutter E 2009 J. Phys. Chem. C 113 3793
[12] Cao L, Price T P, Weiss M and Gao D 2008 Langmuir 24 1640
[13] Li X Y, He Y Z, Wang Y, Dong J C and Li H 2014 Sci. Rep. 4 3938
[14] Li X Y, Ren H R, Wu W K, Li H, Wang L, He Y Z, Wang J J and Zhou Y 2015 Sci. Rep. 5 15190
[15] Afkhami S and Kondic L 2013 Phys. Rev. Lett. 111 034501
[16] Eisenmenger-Sittner C, Schwarz B, Tomastik C, Barna P B and Kovacs A 2006 Appl. Surf. Sci. 252 5466
[17] Rack P D, Guan Y, Fowlkes J D, Melechko A V and Simpson M L 2008 Appl. Phys. Lett. 92 223108
[18] Habenicht A, Olapinski M, Burmeister F, Leiderer P and Boneberg J 2005 Science 309 2043
[19] Leger A, Weber L and Mortensen A 2015 Acta Mater. 91 57
[20] Herminghaus S, Jacobs K, Mecke K, Bischof J, Fery A, Ibn-Elhaj M and Schlagowski S 1998 Science 282 916
[21] Bischof J, Scherer D, Herminghaus S and Leiderer P 1996 Phys. Rev. Lett. 77 1536
[22] Ran G, Zhou J E, Xi S and Li P 2006 J. Alloys Compd. 419 66
[23] Zhu M, Gao Y, Chung C Y, Che Z X, Luo K C and Li B L 2000 Wear 242 47
[24] Kaban I, Kohler M, Ratke L, Hoyer W Mattern N, Eckert J and Greer E L 2011 Acta Mater. 59 6880
[25] Li T, Li J, Wang L, Duan Y R and Li H 2016 Sci. Rep. 6 34074
[26] Li T, Wu W K and Li H 2016 Phys. Chem. Chem. Phys. 18 27500
[27] Shinoda W, DeVane R and Klein M L 2007 Mol. Simul. 33 27
[28] Shinoda W, DeVane R and Klein M L 2008 Soft Matter 4 2454
[29] Martys N S and Mountain R D 1999 Phys. Rev. E 59 3733
[30] Zhao H, Min K and Aluru N 2009 Nano Lett. 9 3012
[31] Zhang L, Li W and Wang S Q 2010 Chin. Phys. B 19 073601
[32] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 126802
[33] Landa A, Wynblatt P, Siegel D J, Adams J B, Mryasov O N and Liu X Y 2000 Acta Mater. 48 1753
[34] Leger A, Weber L and Mortensen A 2015 Acta Mater. 91 57
[35] Metois J J and Heyraud J C 1982 J. Cryst. Growth 57 487
[1] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[2] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[3] Magnetoacoustic position imaging for liquid metal in animal interstitial structure
Xiao-He Zhao(赵筱赫), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Yan-Hong Li(李艳红). Chin. Phys. B, 2020, 29(5): 054305.
[4] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[5] Hydrodynamic binary coalescence of droplets under air flow in a hydrophobic microchannel
Chao Wang(王超), Chao-qun Shen(沈超群), Su-chen Wu(吴苏晨), Xiang-dong Liu(刘向东), Fang-ping Tang(汤方平). Chin. Phys. B, 2019, 28(2): 024702.
[6] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[7] Wettability of Si and Al-12Si alloy on Pd-implanted 6H-SiC
Ting-Ting Wang(汪婷婷), Gui-Wu Liu(刘桂武), Zhi-Kun Huang(黄志坤), Xiang-Zhao Zhang(张相召), Zi-Wei Xu(徐紫巍), Guan-Jun Qiao(乔冠军). Chin. Phys. B, 2018, 27(4): 046101.
[8] Theoretical studies and molecular dynamics simulations on ion transport properties in nanochannels and nanopores
Ke Xiao(肖克), Dian-Jie Li(李典杰), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2018, 27(2): 024702.
[9] Surface-tension-confined droplet microfluidics
Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波). Chin. Phys. B, 2018, 27(2): 029202.
[10] Controllable preparation of vertically standing graphene sheets and their wettability and supercapacitive properties
Hai-Tao Zhou(周海涛), Ning Yu(喻宁), Fei Zou(邹飞), Zhao-Hui Yao(姚朝晖), Ge Gao(高歌), Cheng-Min Shen(申承民). Chin. Phys. B, 2016, 25(9): 096106.
[11] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[12] Structural origin underlying the effect of cooling rate on solidification point
Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国). Chin. Phys. B, 2015, 24(11): 116101.
[13] Dynamic surface wettability of three-dimensional graphene foam
Huang Wen-Bin (黄文斌), Wang Guang-Long (王广龙), Gao Feng-Qi (高凤岐), Qiao Zhong-Tao (乔中涛), Wang Gang (王刚), Chen Min-Jiang (陈闽江), Tao Li (陶立), Deng Ya (邓娅), Sun Lian-Feng (孙连峰). Chin. Phys. B, 2014, 23(4): 046802.
[14] Molecular dynamics simulation of self-diffusion coefficients for liquid metals
Ju Yuan-Yuan (巨圆圆), Zhang Qing-Ming (张庆明), Gong Zi-Zheng (龚自正), Ji Guang-Fu (姬广富). Chin. Phys. B, 2013, 22(8): 083101.
[15] Revision of single atom local density and capture number varying with coverage in uniform depletion approximation and its effect on coalescence and number of stable clusters
Shao Qing-Yi(邵庆益) and Zhang Juan (张娟) . Chin. Phys. B, 2011, 20(8): 086803.
No Suggested Reading articles found!