|
|
Conditions on converting coherence into entanglement |
Lian-Wu Yang(杨连武)1,2, Yun-Jie Xia(夏云杰)1 |
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
2 Department of Physics and Information Engineering, Jining University, Qufu 273155, China |
|
|
Abstract The present studies show that any nonzero amount of coherence of a system can be converted into entanglement between the system and an incoherent ancillary system via incoherent operations. According to this conclusion, we study the process of converting coherence into entanglement via a unitary operation where the initial ancillary system is of different quantum state. We find that some other conditions should be satisfied in converting coherence into entanglement. We also study the conditions of coherence consumption of converting coherence into entanglement.
|
Received: 04 November 2016
Revised: 25 April 2017
Accepted manuscript online:
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204156, 11304179, and 11647172), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20133705110001), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AP09). |
Corresponding Authors:
Yun-Jie Xia
E-mail: yjxia@mail.qfnu.edu.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰) Conditions on converting coherence into entanglement 2017 Chin. Phys. B 26 080302
|
[1] |
Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
|
[2] |
Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[3] |
Åberg J 2014 Phys. Rev. Lett. 113 150402
|
[4] |
Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
|
[5] |
Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Phys. Rev. X 5 021001
|
[6] |
Plenio M B and Huelga S F 2008 New J. Phys. 10 113019
|
[7] |
Rebentrost P, Mohseni M and Aspuru G A 2009 J. Phys. Chem. B 113 9942
|
[8] |
Lloyd S 2011 J. Phys. Conf. Ser. 302 012037
|
[9] |
Li C M, Lambert N, Chen Y N, Chen G Y and Nori F 2012 Sci. Rep. 2 885
|
[10] |
Huelga S and Plenio M 2013 Contemp. Phys. 54 181
|
[11] |
Levi F and Mintert F 2014 New J. Phys. 16 033007
|
[12] |
Vazquez H, Skouta R, Schneebeli S, Kamenetska M, Breslow R, Venkataraman L and Hybertsen M 2012 Nat. Nanotechnol. 7 663
|
[13] |
Karlström O, Linke H, Karlström G and Wacker A 2011 Phys. Rev. B 84 113415
|
[14] |
Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
|
[15] |
Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
|
[16] |
Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
|
[17] |
Girolami D 2014 Phys. Rev. Lett. 113 170401
|
[18] |
Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120
|
[19] |
Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
|
[20] |
Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
|
[21] |
Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett. 116 070402
|
[22] |
Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
|
[23] |
Yang G, Lian B, Nie M and Jin J 2017 Chin. Phys. B 26 040304
|
[24] |
Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
|
[25] |
Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
|
[26] |
Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
|
[27] |
Sanpera A, Tarrach R and Vidal G 1998 Phys. Rev. A 58 826
|
[28] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[29] |
Vedral V 2002 Rev. Mod. Phys. 74 197
|
[30] |
Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
|
[31] |
Mani A and Karimipour V 2015 Phys. Rev. A 92 032331
|
[32] |
Tan K C, Kwon H, Park C and Jeong H 2016 Phys. Rev. A 94 022329
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|