Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 079101    DOI: 10.1088/1674-1056/26/7/079101
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

Density functional theory investigation of carbon monoxide adsorption on the kaolinite (001) surface

Jian Zhao(赵健), Man-Chao He(何满潮), Xiang-Xing Hu(胡祥星), Wei Gao(高炜)
State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
Abstract  Carbon monoxide (CO) is a gaseous pollutant with adverse effects on human health and the environment. Kaolinite is a natural mineral resource that can be used for different applications, including that it can also be used for retention of pollutant gases. The adsorption behavior of carbon monoxide molecules on the (001) surface of kaolinite was studied systematically by using density-functional theory and supercell models for a range coverage from 0.11 to 1.0 monolayers (ML). The CO adsorbed on the three-fold hollow, two-fold bridge, and one-fold top sites of the kaolinite(001) was tilted with respect to the surface. The strongest adsorbed site of carbon monoxide on the kaolinite (001) surface is the hollow site followed by the bridge and top site. The adsorption energy of CO decreased when increasing the coverage, thus indicating the lower stability of surface adsorption due to the repulsion of neighboring CO molecules. In addition to the adsorption structures and energetics, the lattice relaxation, the electronic density of states, and the different charge distribution have been investigated for different surface coverages.
Keywords:  kaolinite      adsorption      carbon monoxide      density functional theory  
Received:  06 January 2017      Revised:  22 March 2017      Accepted manuscript online: 
PACS:  91.60.-x (Physical properties of rocks and minerals)  
  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the Young Elite Scientist Sponsorship Program by CAST and the National Natural Science Foundation of China (Grant No.51574296).
Corresponding Authors:  Jian Zhao     E-mail:  zhaojian0209@aliyun.com

Cite this article: 

Jian Zhao(赵健), Man-Chao He(何满潮), Xiang-Xing Hu(胡祥星), Wei Gao(高炜) Density functional theory investigation of carbon monoxide adsorption on the kaolinite (001) surface 2017 Chin. Phys. B 26 079101

[1] Venaruzzo J L, Volzone C, Rueda M L and Ortida J 2002 Microporous Mesoporous Mater. 56 73
[2] Mahdi R S and Sahar Y 2015 Comput. Condens. Matter 3 21
[3] Jin Y M, Guo L, Veiga M C and Kennes C 2009 Chemosphere 74 332
[4] Huang X Y, Wang Y, Xing Z Y and Du K 2016 Sci. Total Environ. 565 697
[5] Donateo T, Licci F, D'Elia A, Colangelo G, Laforgia D and Ciancarelli F 2015 Appl. Energ. 157 675
[6] Tilley D R and Mentzer J 2006 J. Air Waste Manage. 56 115
[7] Peng L, Zhao C, Lin Y, Zheng X, Tie X and Chan L 2007 Chemosphere 66 1383
[8] Omaye S T 2002 Toxicology 180 139
[9] Levy R J 2015 Neurotoxicol. Teratol. 49 31
[10] Jo J O, Trinh H Q, Kim S H and Mok Y S 2016 Chem. Eng. J. 299 93
[11] Shen Y S, Zong Y H, Ma Y F, Zhu S M and Jin Q J 2016 Fuel 180 727
[12] Sushil S and Batra V S 2012 J. Hazard. Mater. 203 264
[13] Makeey A G, Peskoy N V and Yanagihara H 2012 Appl. Catalysis B:Environ. 119 273
[14] Rahimpour M R, Mazinani S, Vaferi B and Baktash M S 2011 Appl. Energ. 88 41
[15] Sawicki J A, Marcinkowska K and Wagner F E 2010 Nucl. Instrum. Meth. B 268 2544
[16] Hörtz P, Ruff P and Schäfer R 2015 Surf. Sci. 639 66
[17] Ayastuy J L, Fernández-Puertas E, González-Marcos M P and Gutiérrez-Ortiz M A 2012 Int. J. Hydrogen Energ. 37 7385
[18] Itadania A, Tanaka M, Abe T, Taguchi H and Nagao M 2007 J. Colloid Interf. Sci. 313 747
[19] Brunauer S, Emmett P H and Teller E 1938 J. Am. Chem. Soc. 60 309
[20] Leydier F, Chizallet C, Costa D and Raybaud P 2012 Chem. Commun. 48 4076
[21] Zhao X J, Zhang R G, Ling L X and Wang B J 2014 Appl. Surf. Sci. 320 681
[22] Bechthold P, Ardhengi J S, Juan A, González E A and Jasen P V 2014 Appl. Surf. Sci. 315 467
[23] Zheng X B, Zhang Y H and Bell A T 2007 Phys. Chem. C 111 13442
[24] Kuroda Y, Kumashiro R and Nagao M 2002 Appl. Surf. Sci. 196 408
[25] Qiu Z Z, Yu Y X and Mi J G 2012 Appl. Surf. Sci. 258 9629
[26] Chen Y H and Lu D L 2015 Appl. Surf. Sci. 104 221
[27] Brigatti M F, Galan E and Theng B K G 2006 General Introduction:Clays, Clay Minerals, and Clay Science of Handbook of Clay Science (Elsevier Ltd), pp. 27–30
[28] Adams J M 1983 Clay. Clay. Miner. 31 352
[29] Benco L, Tunega D, Hafner J and Lischka H 2001 Am. Miner. 86 1057
[30] Bish D L 1993 Clay. Clay. Miner. 41 738
[31] Hayashi S 1997 Clay. Clay. Miner. 45 724
[32] Hess A C and Saunders V R 1992 J. Phys. Chem. 11 4367
[33] Hobbs J D, Cygan R T, Nagy K L, Schultz P A and Sears M P 1997 Am. Miner. 82 657
[34] Plancon A, Giese R F Jr, Snyder R, Drits V A and Bookin A S 989 Clay. Clay. Miner. 37 195
[35] Teppen B J, Rasmussen K, Bertsch P M, Miller D M and Schäferll L 1997 J. Phys. Chem. 101 1579
[36] Hu X L and Angelos M 2008 Surf. Sci. 602 960
[37] Sato H, Ono K, Johnston C T and Yamagishi A 2005 Am. Miner. 90 1824
[38] Šolc R, Gerzabek M H, Lischka H and Tunega D 2011 Geoderma 169 47
[39] Giese R F J R 1973 Clay. Clay. Miner. 21 145
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Sun B, Zhang P, Wang Z G, Duan S Q, Zhao X G, Ma X C and Xue Q K 2008 Phys. Rev. B 78 1758
[43] Zhang X L, Wu Y Y, Shao X H, Lu Y and Zhang P 2016 Chin. Phys. B 25 057102
[44] Hua N, Tao X M and Tan M Q 2012 Chin. Phys. B 21 016802
[45] Yang Y, Zhou G, Wu J, Duan W H, Xue Q K, Gu B L, Jiang P, Ma X C and Zhang S B 2008 J. Chem. Phys. 128 164705
[46] Hua N, Lan Z Q, Guo J and Tan M Q 2015 Appl. Surf. Sci. 328 641
[47] Wang Y J, Wang C Y and Wang S Y 2011 Chin. Phys. B 20 036801
[48] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[49] Zhao J and He M C 2014 Appl. Surf. Sci. 317 153
[50] He M C and Zhao J 2012 Chin. Phys. Lett. 29 153
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!