ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion |
Xiaohong Hu(胡晓鸿)1,2,3, Wei Zhang(张伟)1, Yuanshan Liu(刘元山)1, Ye Feng(冯野)1, Wenfu Zhang(张文富)1, Leiran Wang(王擂然)1, Yishan Wang(王屹山)1,3, Wei Zhao(赵卫)1,3 |
1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Stable dark soliton and dark pulse formation in normally dispersive and red-detuned microcavities are investigated by numerically solving the normalized Lugiato-Lefever equation. The soliton essence is proved by fitting the calculated field intensity profile with the analytical formula of a dark soliton. Meanwhile, we find that a dark soliton can be generated either from the nonlinear evolution of an optical shock wave or narrowing of a locally broad dark pulse with smoother fronts. Explicit analytical expression is obtained to describe the oscillatory fronts of the optical shock wave. Furthermore, from the calculation results, we show that for smaller frequency detunings, e.g., α<3, in addition to the dark soliton formation, a single dark pulse with an oscillatory dip can also arise and propagate stably in the microcavity under proper pump detuning and pump strength combination. The existence region together with various field intensity profiles and the corresponding spectra of single dark pulse are demonstrated.
|
Received: 20 January 2017
Revised: 15 March 2017
Accepted manuscript online:
|
PACS:
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Wi
|
(Nonlinear waveguides)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFF0200702),the National Natural Science Foundation of China (Grant Nos.61690222 and 11573058),and the CAS-SAFEA International Partnership Program for Creative Research Teams. |
Corresponding Authors:
Yishan Wang
E-mail: yshwang@opt.ac.cn
|
Cite this article:
Xiaohong Hu(胡晓鸿), Wei Zhang(张伟), Yuanshan Liu(刘元山), Ye Feng(冯野), Wenfu Zhang(张文富), Leiran Wang(王擂然), Yishan Wang(王屹山), Wei Zhao(赵卫) Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion 2017 Chin. Phys. B 26 074216
|
[1] |
Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
|
[2] |
Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332 555
|
[3] |
Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E and Moss D J 2010 Nat. Photonics 4 41
|
[4] |
Wang T, Yang X, Liu X F, Lei F C, Gao M, Hu Y Q and Long G L 2015 Acta Phys. Sin. 64 164212 (in Chinese)
|
[5] |
Jung H, Xiong C, Fong K Y, Zhang X F and Tang H X 2013 Opt. Lett. 38 2810
|
[6] |
Okawachi Y, Saha K, Levy J S, Wen Y H, Lipson M and Gaeta A L 2011 Opt. Lett. 36 3398
|
[7] |
Lei X, Bian D D and Chen S W 2016 Chin. Phys. B 25 114214
|
[8] |
Grudinin I S, Yu N and Maleki L 2009 Opt. Lett. 34 878
|
[9] |
Liang W, Savchenkov A A, Matsko A B, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2290
|
[10] |
Savchenkov A A, Matsko A B, Ilchenko V S, Solomatine I, Seidel D and Maleki L 2008 Phys. Rev. Lett. 101 093902
|
[11] |
Del'Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R and Kippenberg T J 2011 Phys. Rev. Lett. 107 063901
|
[12] |
Hugi A, Villares G, Blaser S, Liu H C and Faist J 2012 Nature 492 229
|
[13] |
Griffith A G, Lau R K W, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H D, Yu M, Phare C T, Poitras C B, Gaeta A L and Lipson M 2015 Nat. Commun. 6 1
|
[14] |
Wang C Y, Herr T, Del'Haye P, Schliesser A, Holzwarth R, Hänsch T W, Picquè N and Kippenberg T J 2011 Proceedings of the Quantum Electronics and Laser Science Conference, May 1–6, 2011, Baltimore, Maryland, United States, p. 1
|
[15] |
Lecaplain C, Galy C J, Lucas E, Jost J D and Kippenberg T J 2015 Proceedings of CLEO, May 10–15, 2015, San Jose, California United States, p. S78
|
[16] |
Savchenkov A A, Ilchenko V S, Teodoro F Di, Belden P M, Lotshaw T W, Matsko A B and Maleki L 2015 Opt. Lett. 40 3468
|
[17] |
Saha K, Okawachi Y, Levy J S, Lau R K W, Luke K, Foster M A, Lipson M, and Gaeta A L 2012 Opt. Express 20 26935
|
[18] |
Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145
|
[19] |
Hansson T, Modotto D and Wabnitz S 2015 Phys. Rev. A 88 023819
|
[20] |
Liang W, Savchenkov A A, Ilchenko V S, Eliyahu D, Seidel D, Matsko A B and Maleki L 2014 Opt. Lett. 39 2920
|
[21] |
Xue X X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M H and Weiner A M 2015 Nat. Photon. 9 594
|
[22] |
Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87 053852
|
[23] |
Haelterman M, Trillo S and Wabnitz S 1992 Opt. Commun. 91 401
|
[24] |
Coen S, Randle H G, Sylvestre T and Erkintalo M 2013 Opt. Lett. 38 37
|
[25] |
Xu X, Hu X H, Feng Y, Liu Y S, Zhang W, Yang Z, Zhao W and Wang Y S 2016 Chin. Phys. B 25 034208
|
[26] |
Godey C, Balakireva I V, Coillet A and Chembo Y K 2014 Phys. Rev. A. 89 063814
|
[27] |
Little B E, Laine J P and Haus H A 1999 J. Lightwave Technol. 17 704
|
[28] |
Schiller S 1993 Appl. Opt. 32 2181
|
[29] |
Agrawal G P 2007 Nonlinear Fiber Optics, 4th ed. (San Diego:Academic) p. 140
|
[30] |
Malaguti S, Bellanca G and Trillo S 2014 Opt. Lett. 39 2475
|
[31] |
Rivas P P, Gomila D, Knobloch E, Coen S and Gelens L 2016 Opt. Lett. 41 2402
|
[32] |
Lobanov V E, Lihachev G, Kippenberg T J and Gorodetsky M L 2015 Opt. Express 23 7713
|
[33] |
Rivas P P, Knobloch E, Gomila D and Gelens L 2016 Phys. Rev. A 93 063839
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|