Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074216    DOI: 10.1088/1674-1056/26/7/074216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion

Xiaohong Hu(胡晓鸿)1,2,3, Wei Zhang(张伟)1, Yuanshan Liu(刘元山)1, Ye Feng(冯野)1, Wenfu Zhang(张文富)1, Leiran Wang(王擂然)1, Yishan Wang(王屹山)1,3, Wei Zhao(赵卫)1,3
1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Stable dark soliton and dark pulse formation in normally dispersive and red-detuned microcavities are investigated by numerically solving the normalized Lugiato-Lefever equation. The soliton essence is proved by fitting the calculated field intensity profile with the analytical formula of a dark soliton. Meanwhile, we find that a dark soliton can be generated either from the nonlinear evolution of an optical shock wave or narrowing of a locally broad dark pulse with smoother fronts. Explicit analytical expression is obtained to describe the oscillatory fronts of the optical shock wave. Furthermore, from the calculation results, we show that for smaller frequency detunings, e.g., α<3, in addition to the dark soliton formation, a single dark pulse with an oscillatory dip can also arise and propagate stably in the microcavity under proper pump detuning and pump strength combination. The existence region together with various field intensity profiles and the corresponding spectra of single dark pulse are demonstrated.
Keywords:  pulse propagation      temporal solitons      microcavities      nonlinear optics  
Received:  20 January 2017      Revised:  15 March 2017      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.-k (Nonlinear optics)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2016YFF0200702),the National Natural Science Foundation of China (Grant Nos.61690222 and 11573058),and the CAS-SAFEA International Partnership Program for Creative Research Teams.
Corresponding Authors:  Yishan Wang     E-mail:  yshwang@opt.ac.cn

Cite this article: 

Xiaohong Hu(胡晓鸿), Wei Zhang(张伟), Yuanshan Liu(刘元山), Ye Feng(冯野), Wenfu Zhang(张文富), Leiran Wang(王擂然), Yishan Wang(王屹山), Wei Zhao(赵卫) Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion 2017 Chin. Phys. B 26 074216

[1] Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
[2] Kippenberg T J, Holzwarth R and Diddams S A 2011 Science 332 555
[3] Razzari L, Duchesne D, Ferrera M, Morandotti R, Chu S, Little B E and Moss D J 2010 Nat. Photonics 4 41
[4] Wang T, Yang X, Liu X F, Lei F C, Gao M, Hu Y Q and Long G L 2015 Acta Phys. Sin. 64 164212 (in Chinese)
[5] Jung H, Xiong C, Fong K Y, Zhang X F and Tang H X 2013 Opt. Lett. 38 2810
[6] Okawachi Y, Saha K, Levy J S, Wen Y H, Lipson M and Gaeta A L 2011 Opt. Lett. 36 3398
[7] Lei X, Bian D D and Chen S W 2016 Chin. Phys. B 25 114214
[8] Grudinin I S, Yu N and Maleki L 2009 Opt. Lett. 34 878
[9] Liang W, Savchenkov A A, Matsko A B, Ilchenko V S, Seidel D and Maleki L 2011 Opt. Lett. 36 2290
[10] Savchenkov A A, Matsko A B, Ilchenko V S, Solomatine I, Seidel D and Maleki L 2008 Phys. Rev. Lett. 101 093902
[11] Del'Haye P, Herr T, Gavartin E, Gorodetsky M L, Holzwarth R and Kippenberg T J 2011 Phys. Rev. Lett. 107 063901
[12] Hugi A, Villares G, Blaser S, Liu H C and Faist J 2012 Nature 492 229
[13] Griffith A G, Lau R K W, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H D, Yu M, Phare C T, Poitras C B, Gaeta A L and Lipson M 2015 Nat. Commun. 6 1
[14] Wang C Y, Herr T, Del'Haye P, Schliesser A, Holzwarth R, Hänsch T W, Picquè N and Kippenberg T J 2011 Proceedings of the Quantum Electronics and Laser Science Conference, May 1–6, 2011, Baltimore, Maryland, United States, p. 1
[15] Lecaplain C, Galy C J, Lucas E, Jost J D and Kippenberg T J 2015 Proceedings of CLEO, May 10–15, 2015, San Jose, California United States, p. S78
[16] Savchenkov A A, Ilchenko V S, Teodoro F Di, Belden P M, Lotshaw T W, Matsko A B and Maleki L 2015 Opt. Lett. 40 3468
[17] Saha K, Okawachi Y, Levy J S, Lau R K W, Luke K, Foster M A, Lipson M, and Gaeta A L 2012 Opt. Express 20 26935
[18] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145
[19] Hansson T, Modotto D and Wabnitz S 2015 Phys. Rev. A 88 023819
[20] Liang W, Savchenkov A A, Ilchenko V S, Eliyahu D, Seidel D, Matsko A B and Maleki L 2014 Opt. Lett. 39 2920
[21] Xue X X, Xuan Y, Liu Y, Wang P H, Chen S, Wang J, Leaird D E, Qi M H and Weiner A M 2015 Nat. Photon. 9 594
[22] Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87 053852
[23] Haelterman M, Trillo S and Wabnitz S 1992 Opt. Commun. 91 401
[24] Coen S, Randle H G, Sylvestre T and Erkintalo M 2013 Opt. Lett. 38 37
[25] Xu X, Hu X H, Feng Y, Liu Y S, Zhang W, Yang Z, Zhao W and Wang Y S 2016 Chin. Phys. B 25 034208
[26] Godey C, Balakireva I V, Coillet A and Chembo Y K 2014 Phys. Rev. A. 89 063814
[27] Little B E, Laine J P and Haus H A 1999 J. Lightwave Technol. 17 704
[28] Schiller S 1993 Appl. Opt. 32 2181
[29] Agrawal G P 2007 Nonlinear Fiber Optics, 4th ed. (San Diego:Academic) p. 140
[30] Malaguti S, Bellanca G and Trillo S 2014 Opt. Lett. 39 2475
[31] Rivas P P, Gomila D, Knobloch E, Coen S and Gelens L 2016 Opt. Lett. 41 2402
[32] Lobanov V E, Lihachev G, Kippenberg T J and Gorodetsky M L 2015 Opt. Express 23 7713
[33] Rivas P P, Knobloch E, Gomila D and Gelens L 2016 Phys. Rev. A 93 063839
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[3] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[6] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[7] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[8] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[9] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[10] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[11] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[12] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[13] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[14] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[15] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
No Suggested Reading articles found!