PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Equation of state for warm dense lithium: A first principles investigation |
Feiyun Long(龙飞沄)1, Haitao Liu(刘海涛)1, Dafang Li(李大芳)1, Jun Yan(颜君)1,2 |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract The quantum molecular dynamics based on the density functional theory has been adopted to simulate the equation of state for the shock compressed lithium. In contrary to some earlier experimental measurement and theoretical simulation, there is not any evidence of the ‘kink’ in the Hugoniot curve in our accurate simulation. Throughout the shock compression process, only a simple solid-to-liquid melting behavior is demonstrated, instead of complicated solid-solid phase transitions. Moreover, the x-ray absorption near-edge spectroscopy has been predicted as a feasible way to diagnose the structural evolution of warm dense lithium in this density region.
|
Received: 18 January 2017
Revised: 16 March 2017
Accepted manuscript online:
|
PACS:
|
51.30.+i
|
(Thermodynamic properties, equations of state)
|
|
52.65.Yy
|
(Molecular dynamics methods)
|
|
64.70.D-
|
(Solid-liquid transitions)
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474034 and 11675024), the Foundation for Development of Science and Technology of China Academy of Engineering Physics (Grant Nos. 2015B0102020 and 2015B0102022), and the Science Challenge Project (Grant No. TZ2016005). |
Corresponding Authors:
Jun Yan
E-mail: yan_jun@iapcm.ac.cn
|
Cite this article:
Feiyun Long(龙飞沄), Haitao Liu(刘海涛), Dafang Li(李大芳), Jun Yan(颜君) Equation of state for warm dense lithium: A first principles investigation 2017 Chin. Phys. B 26 065101
|
[1] |
Hanfland M, Syassen K, Christensen N E and Novikov D L 2000 Nature 408 174
|
[2] |
Orlov A I, Khvostantsev L G, Gromnitskaya E L and Stal'gorova O V 2001 J. Exp. Theor. Phys. 93 393
|
[3] |
Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
|
[4] |
Maksimov E G, Magnitskaya M V and Fortov V E 2005 Phys.-Usp. 48 761
|
[5] |
Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 146401
|
[6] |
Yao Y, Tse J S and Klug D D 2009 Phys. Rev. Lett. 102 115503
|
[7] |
Yang J J, Tse J S and Iitaka T 2010 J. Phys.: Condens. Matter 22 095503
|
[8] |
Kulkarni A, Doll K, Prasad D L V K, Schoen J C and Jansen M 2011 Phys. Rev. B 84 172101
|
[9] |
Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
|
[10] |
Orlov A I and Brazhkin V V 2013 JETP Lett. 97 270
|
[11] |
Naomov I I and Hemley R J 2015 Phys. Rev. Lett. 114 156403
|
[12] |
Tamblyn I, Raty J Y and Bonev S A 2008 Phys. Rev. Lett. 101 075703
|
[13] |
Lepeshkin S V, Magnitskaya M V and Maksimov E G 2009 JETP Lett. 89 586
|
[14] |
Li D F, Zhang P, Yan J and Liu H Y 2011 Europhys. Lett. 95 56004
|
[15] |
Rousseau B, Xie Y, Ma Y and Bergara A 2011 Eur. Phys. J. B 8 1
|
[16] |
Guillaume C L, Gregoryanz E, Degtyareva O, McMahon M I, Hanfland M, Evans S, Guthrie M, Sinogeikin S V and Mao H K 2011 Nat. Phys. 7 211
|
[17] |
Schaeffer A M J, Talmadge W B, Temple S R and Deemyad S 2012 Phys. Rev. Lett. 109 185702
|
[18] |
Arafin S and Singh R N 2016 J. Phys. Chem. Solids 91 101
|
[19] |
Shimizu K, Ishikawa H, Takao D, Yagi T and Amaya K 2002 Nature 419 597
|
[20] |
Fortov V E, Yakushev V V, Kagan K L, Lomonosov I V, Maksimov E G, Magnitskaya M V, Postnov V I and Yakusheva T I 2002 J. Phys.: Condens. Matter 14 10809
|
[21] |
Bastea M and Bastea S 2002 Phys. Rev. B 65 193104
|
[22] |
Kasinathan D, Kunes J, Lazicki A, Rosner H, Yoo C S, Scalettar R T and Pickett W E 2006 Phys. Rev. Lett. 96 047004
|
[23] |
Profeta G, Franchini C, Lathiotakis N N, Floris A, Sanna A, Marques M A L, Lüders M, Massidda S, Gross E K U and Continenza A 2006 Phys. Rev. Lett. 96 047003
|
[24] |
Kietzmann A, Redmer R, Desjarlais M P and Mattsson T R 2008 Phys. Rev. Lett. 101 070401
|
[25] |
Matsuoka T and Shimizu K 2009 Nature 458 186
|
[26] |
Bazhirov T, Noffsinger J and Cohen M L 2010 Phys. Rev. B 82 184509
|
[27] |
Marqués M, McMahon M I, Gregoryanz E, Hanfland M, Guillaume C L, Pickard C J, Ackland G J and Nelmes R J 2011 Phys. Rev. Lett. 106 095502
|
[28] |
Matsuoka T, Sakata M, Nakamoto Y, Takahama K, Ichimaru K, Mukai K, Ohta K, Hirao N, Ohishi Y and Shimizu K 2014 Phys. Rev. B 89 144103
|
[29] |
Schaeffer A M, Temple S R, Bishop J K and Deemyad S 2015 Proc. Nat. Acad. Sci. USA 112 60
|
[30] |
Saiz E G, Gregori G, Gericke D O, Vorberger J, Barbrel B, Clarke R J, Freeman R R, Glenzer S H, Khattak F Y, Koenig M, Landen O L, Neely D, Neumayer P, Notley M M, Pelka A, Price D, Roth M, Schollmeier M, Spindloe C, Weber R L, Woerkom L V, Wünsch K and Riley D 2008 Nat. Phys. 4 940
|
[31] |
Kugland N L, Gregori G, Bandyopadhyay S, Brenner C M, Brown C R D, Constantin C, Glenzer S H, Khattak F Y, Kritcher A L, Niemann C, Otten A, Pasley J, Pelka A, Roth M, Spindloe C and Riley D 2009 Phys. Rev. E 80 066406
|
[32] |
Bryk T, Klevets I, Ruocco G, Scopigno T and Seitsonen A 2014 Phys. Rev. B 90 014202
|
[33] |
Chen M, Vella J R, Panagiotopoulos A Z, Debenedetti P G, Stillinger F H and Carter E A 2015 AICHE J. 61 2841
|
[34] |
Vella J R, Stillinger F H, Panagiotopoulos A Z and Debenedetti P G 2015 J. Phys. Chem. B 119 8960
|
[35] |
Bakanova A A, Dudoladov I P and Trunin R F 1965 Sov. Phys.-Sol. State 7 1307
|
[36] |
Young D A and Ross M 1984 Phys. Rev. B 29 682
|
[37] |
Su J T and Goddard W A III 2007 Phys. Rev. Lett. 99 185003
|
[38] |
Kim H, Su J T and Goddard W A III 2011 Proc. Nat. Acad. Sci. USA 108 15101
|
[39] |
Rice M H 1965 J. Phys. Chem. Solids 26 483
|
[40] |
Thiel M V, ed. 1977 Compendium of shock wave data (Lawrence Livermore Laboratory Report UCRL-50108) p. 323,
|
[41] |
Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)
|
[42] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[43] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[44] |
Nosé S 1984 J. Chem. Phys. 81 511
|
[45] |
Mermin N D 1965 Phys. Rev. 137 A1441
|
[46] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[47] |
Blöchl P E 1990 Phys. Rev. B 41 5414
|
[48] |
Anderson P W 1961 Phys. Rev. 124 41
|
[49] |
Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zérah G, Jollet F et al. 2002 Comput. Mater. Sci. 25 478
|
[50] |
Mazevet S and Zérah G 2008 Phys. Rev. Lett. 101 155001
|
[51] |
Recoules V and Mazevet S 2009 Phys. Rev. B 80 064110
|
[52] |
Holzwarth N A W, Tackett A R and Mattews G E 2001 Comput. Phys. Commun. 135 329
|
[53] |
Fabbris G, Lim J, Veiga L S I, Haskel D and Schilling J S 2015 Phys. Rev. B 91 085111
|
[54] |
Kunz C, Petersen H and Lynch D W 1974 Phys. Rev. Lett. 33 1556
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|