Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 065101    DOI: 10.1088/1674-1056/26/6/065101
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Equation of state for warm dense lithium: A first principles investigation

Feiyun Long(龙飞沄)1, Haitao Liu(刘海涛)1, Dafang Li(李大芳)1, Jun Yan(颜君)1,2
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  The quantum molecular dynamics based on the density functional theory has been adopted to simulate the equation of state for the shock compressed lithium. In contrary to some earlier experimental measurement and theoretical simulation, there is not any evidence of the ‘kink’ in the Hugoniot curve in our accurate simulation. Throughout the shock compression process, only a simple solid-to-liquid melting behavior is demonstrated, instead of complicated solid-solid phase transitions. Moreover, the x-ray absorption near-edge spectroscopy has been predicted as a feasible way to diagnose the structural evolution of warm dense lithium in this density region.
Keywords:  equation of state      x-ray absorption near-edge spectroscopy      density functional theory      quantum molecular dynamics  
Received:  18 January 2017      Revised:  16 March 2017      Accepted manuscript online: 
PACS:  51.30.+i (Thermodynamic properties, equations of state)  
  52.65.Yy (Molecular dynamics methods)  
  64.70.D- (Solid-liquid transitions)  
  78.70.Dm (X-ray absorption spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474034 and 11675024), the Foundation for Development of Science and Technology of China Academy of Engineering Physics (Grant Nos. 2015B0102020 and 2015B0102022), and the Science Challenge Project (Grant No. TZ2016005).
Corresponding Authors:  Jun Yan     E-mail:  yan_jun@iapcm.ac.cn

Cite this article: 

Feiyun Long(龙飞沄), Haitao Liu(刘海涛), Dafang Li(李大芳), Jun Yan(颜君) Equation of state for warm dense lithium: A first principles investigation 2017 Chin. Phys. B 26 065101

[1] Hanfland M, Syassen K, Christensen N E and Novikov D L 2000 Nature 408 174
[2] Orlov A I, Khvostantsev L G, Gromnitskaya E L and Stal'gorova O V 2001 J. Exp. Theor. Phys. 93 393
[3] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[4] Maksimov E G, Magnitskaya M V and Fortov V E 2005 Phys.-Usp. 48 761
[5] Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 146401
[6] Yao Y, Tse J S and Klug D D 2009 Phys. Rev. Lett. 102 115503
[7] Yang J J, Tse J S and Iitaka T 2010 J. Phys.: Condens. Matter 22 095503
[8] Kulkarni A, Doll K, Prasad D L V K, Schoen J C and Jansen M 2011 Phys. Rev. B 84 172101
[9] Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
[10] Orlov A I and Brazhkin V V 2013 JETP Lett. 97 270
[11] Naomov I I and Hemley R J 2015 Phys. Rev. Lett. 114 156403
[12] Tamblyn I, Raty J Y and Bonev S A 2008 Phys. Rev. Lett. 101 075703
[13] Lepeshkin S V, Magnitskaya M V and Maksimov E G 2009 JETP Lett. 89 586
[14] Li D F, Zhang P, Yan J and Liu H Y 2011 Europhys. Lett. 95 56004
[15] Rousseau B, Xie Y, Ma Y and Bergara A 2011 Eur. Phys. J. B 8 1
[16] Guillaume C L, Gregoryanz E, Degtyareva O, McMahon M I, Hanfland M, Evans S, Guthrie M, Sinogeikin S V and Mao H K 2011 Nat. Phys. 7 211
[17] Schaeffer A M J, Talmadge W B, Temple S R and Deemyad S 2012 Phys. Rev. Lett. 109 185702
[18] Arafin S and Singh R N 2016 J. Phys. Chem. Solids 91 101
[19] Shimizu K, Ishikawa H, Takao D, Yagi T and Amaya K 2002 Nature 419 597
[20] Fortov V E, Yakushev V V, Kagan K L, Lomonosov I V, Maksimov E G, Magnitskaya M V, Postnov V I and Yakusheva T I 2002 J. Phys.: Condens. Matter 14 10809
[21] Bastea M and Bastea S 2002 Phys. Rev. B 65 193104
[22] Kasinathan D, Kunes J, Lazicki A, Rosner H, Yoo C S, Scalettar R T and Pickett W E 2006 Phys. Rev. Lett. 96 047004
[23] Profeta G, Franchini C, Lathiotakis N N, Floris A, Sanna A, Marques M A L, Lüders M, Massidda S, Gross E K U and Continenza A 2006 Phys. Rev. Lett. 96 047003
[24] Kietzmann A, Redmer R, Desjarlais M P and Mattsson T R 2008 Phys. Rev. Lett. 101 070401
[25] Matsuoka T and Shimizu K 2009 Nature 458 186
[26] Bazhirov T, Noffsinger J and Cohen M L 2010 Phys. Rev. B 82 184509
[27] Marqués M, McMahon M I, Gregoryanz E, Hanfland M, Guillaume C L, Pickard C J, Ackland G J and Nelmes R J 2011 Phys. Rev. Lett. 106 095502
[28] Matsuoka T, Sakata M, Nakamoto Y, Takahama K, Ichimaru K, Mukai K, Ohta K, Hirao N, Ohishi Y and Shimizu K 2014 Phys. Rev. B 89 144103
[29] Schaeffer A M, Temple S R, Bishop J K and Deemyad S 2015 Proc. Nat. Acad. Sci. USA 112 60
[30] Saiz E G, Gregori G, Gericke D O, Vorberger J, Barbrel B, Clarke R J, Freeman R R, Glenzer S H, Khattak F Y, Koenig M, Landen O L, Neely D, Neumayer P, Notley M M, Pelka A, Price D, Roth M, Schollmeier M, Spindloe C, Weber R L, Woerkom L V, Wünsch K and Riley D 2008 Nat. Phys. 4 940
[31] Kugland N L, Gregori G, Bandyopadhyay S, Brenner C M, Brown C R D, Constantin C, Glenzer S H, Khattak F Y, Kritcher A L, Niemann C, Otten A, Pasley J, Pelka A, Roth M, Spindloe C and Riley D 2009 Phys. Rev. E 80 066406
[32] Bryk T, Klevets I, Ruocco G, Scopigno T and Seitsonen A 2014 Phys. Rev. B 90 014202
[33] Chen M, Vella J R, Panagiotopoulos A Z, Debenedetti P G, Stillinger F H and Carter E A 2015 AICHE J. 61 2841
[34] Vella J R, Stillinger F H, Panagiotopoulos A Z and Debenedetti P G 2015 J. Phys. Chem. B 119 8960
[35] Bakanova A A, Dudoladov I P and Trunin R F 1965 Sov. Phys.-Sol. State 7 1307
[36] Young D A and Ross M 1984 Phys. Rev. B 29 682
[37] Su J T and Goddard W A III 2007 Phys. Rev. Lett. 99 185003
[38] Kim H, Su J T and Goddard W A III 2011 Proc. Nat. Acad. Sci. USA 108 15101
[39] Rice M H 1965 J. Phys. Chem. Solids 26 483
[40] Thiel M V, ed. 1977 Compendium of shock wave data (Lawrence Livermore Laboratory Report UCRL-50108) p. 323,
[41] Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley: University of California Press)
[42] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[43] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[44] Nosé S 1984 J. Chem. Phys. 81 511
[45] Mermin N D 1965 Phys. Rev. 137 A1441
[46] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[47] Blöchl P E 1990 Phys. Rev. B 41 5414
[48] Anderson P W 1961 Phys. Rev. 124 41
[49] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zérah G, Jollet F et al. 2002 Comput. Mater. Sci. 25 478
[50] Mazevet S and Zérah G 2008 Phys. Rev. Lett. 101 155001
[51] Recoules V and Mazevet S 2009 Phys. Rev. B 80 064110
[52] Holzwarth N A W, Tackett A R and Mattews G E 2001 Comput. Phys. Commun. 135 329
[53] Fabbris G, Lim J, Veiga L S I, Haskel D and Schilling J S 2015 Phys. Rev. B 91 085111
[54] Kunz C, Petersen H and Lynch D W 1974 Phys. Rev. Lett. 33 1556
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!