PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration |
Xueke Wu(吴雪科)1, Huidong Li(李会东)1, Zhanhui Wang(王占辉)2, Hao Feng(冯灏)1, Yulin Zhou(周雨林)2 |
1 School of Science, Xihua University, Chengdu 610039, China; 2 Southwestern Institute of Physics, Chengdu 610041, China |
|
|
Abstract Using the trans-neut module of the BOUT++ code, we study how the fueling penetration depth of supersonic molecular beam injection (SMBI) is affected by plasma density and temperature profiles. The plasma densities and temperatures in L-mode are initialized to be a set of linear profiles with different core plasma densities and temperatures. The plasma profiles are relaxed to a set of steady states with different core plasma densities or temperatures. For a fixed gradient, the steady profiles are characterized by the core plasma density and temperature. The SMBI is investigated based on the final steady profiles with different core plasma densities or temperatures. The simulated results suggest that the SMB injection will be blocked by dense core plasma and high-temperature plasma. Once the core plasma density is set to be Ni0=1.4N0 (N0=1×1019 m-3) it produces a deeper penetration depth. When Ni0 is increased from 1.4N0 to 3.9N0 at intervals of 0.8N0, keeping a constant core temperature of Te0=725 eV at the radial position of ψ=0.65}, the penetration depth gradually decreases. Meanwhile, when the density is fixed at Ni0=1.4N0 and the core plasma temperature Te0 is set to 365 eV, the penetration depth increases. The penetration depth decreases as Te0 is increased from 365 eV to 2759 eV. Sufficiently large Ni0 or Te0 causes most of the injected molecules to stay in the scrape-off-layer (SOL) region, lowering the fueling efficiency.
|
Received: 05 November 2016
Revised: 13 March 2017
Accepted manuscript online:
|
PACS:
|
52.25.Fi
|
(Transport properties)
|
|
52.25.Ya
|
(Neutrals in plasmas)
|
|
Fund: Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 11605143), the Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province, China (Grant No. 05020732), the National Natural Science Foundation of China (Grant No. 11575055), the Fund from the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001), the National ITER Program of China (Contract No. 2014GB113000), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023). |
Corresponding Authors:
Huidong Li, Zhanhui Wang
E-mail: huidongli888@163.com;zhwang@swip.ac.cn
|
Cite this article:
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林) Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration 2017 Chin. Phys. B 26 065201
|
[1] |
Sajjad S, Gao X, Ling B, Bhatti S H and Ang T 2009 Phys. Lett. A 373 1133
|
[2] |
Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Owen L W, Rasmussen D A, Maruyama S and Parks P B 2000 Phys. Plasma 7 1878
|
[3] |
Yao L, Zhao D, Feng B, Chen C, Zhou Y, Han X, Li Y, Bucalossi J and Duan X 2010 Plasma Sci. Technol. 12 529
|
[4] |
Yu D L, Chen C Y, Yao L H, Dong J Q, Feng B B, Zhou Y, Shi Z B, Zhou J, Han X Y, Zhong W L, Cui C H, Huang Y, Cao Z, Liu Yi, Yan L W, Yang Q W, Duan X R and Liu Y 2012 Nucl. Fusion 52 082001
|
[5] |
Xiao W W, Zou X L, Ding X T, Yao L H, Feng B B, Song X M, Song S D, Zhou Y, Liu Z T, Yuan B S, Sun H J, Ji X Q, Gao Y D, Li Y G, Yan L W, Yang Q W, Liu Y, Dong J Q, Duan X R, Liu Y and Pan C H 2010 Phys. Rev. Lett. 104 215001
|
[6] |
Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong W L, Xu M, Yuan B S, Rhee T, Kwon J M, Shi Z B, Rao J, Lei G J, Cao J Y, Zhou J, Huang M, Yu D L, Huang Y, Zhao K J, Cui Z Y, Song X M, Gao Y D, Zhang Y P, Cheng J, Han X Y, Zhou Y, Dong Y B, Ji X Q, Yang Q W, Liu Y, Yan L W, Duan X R, Liu Y and the HL-2A Team 2012 Nucl. Fusion 52 114027
|
[7] |
Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Duan X R and Yang Q W 2010 Plasma Phys. Control. Fusion 52 045003
|
[8] |
Cui X W, Cui Z Y, Feng B B, Pan Y D, Zhou H Y, Sun P, Fu B Z, Lu P, Dong Y B, Gao J M, Song S D, Yang Q W 2013 Chin. Phys. B 22 125201
|
[9] |
Xiao W W, Zou X L, Ding X T, Dong J Q, Yao L H, Song S D, Liu Z T, Gao Y D, Feng B B, Song X M, Yang Q W, Yan L W, Liu Y, Duan X R, Pan C H and Liu Y 2010 Rev. Sci. Instrum. 81 013506
|
[10] |
Yu D L, Chen C Y, Yao L H, Feng B B, Han X Y, Yang L M, Zhong W L, Zhou Y, Zhao K J, Huang Y, Liu Y, Yan L W, Yang Q W, Dong J Q and Duan X R 2010 Nucl. Fusion 50 035009
|
[11] |
Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G and Zonca F 2007 Nucl. Fusion 47 S264
|
[12] |
Kwon M, Oh Y K, Yang H L, Na H K, Kim Y S, Kwak J G, Kim W C, Kim J Y, Ahn JW, Bae Y S, Baek S H, Bak J G, Bang E N, Chang C S, Chang D H, Chavdarovski I, Chen Z Y, Cho K W, Cho M H, Choe W, Choi J H, Chu Y, Chung K S, Diamond P, Do H J, Eidietis N, England A C, Grisham L, Hahm T S, Hahn S H, Han W S, Hatae T, Hillis D, Hong J S, Hong S H, Hong S R, Humphrey D, Hwang Y S, Hyatt A, In Y K, Jackson G L, Jang Y B, Jeon Y M, Jeong, Jeong J I N Y, Jeong S H, Jhang H G, Jin J K, Joung M, Ju J, Kawahata K, Kim C H, Kim D H, Kim H S, Kim H S, Kim H K, Kim H T, Kim J H, Kim J C, Kim J S, Kim J S, Kim K M, Kim K M, Kim K P, Kim M K, Kim S H, Kim S S, Kim S T, Kim S W, Kim Y J, Kim Y K, Kim Y O, Ko W H, Kogi Y, Kong J D, Kubo S, Kumazawa R, Kwak S W, Kwon J M, Kwon O J, LeConte M, Lee D G, Lee D K, Lee D R, Lee D S, Lee H J, Lee J H, Lee K D, Lee K S, Lee S G, Lee S H, Lee S I, Lee S M, Lee T G, Lee W C, Lee W L, Leur J, Lim D S, Lohr J, Mase A, Mueller D, Moon K M, Mutoh T, Na Y S, Nagayama Y, Nam Y U, Namkung W, Oh B H, Oh S G, Oh S T, Park B H, Park D S, Park H, Park H T, Park J K, Park J S, Park K R, Park M K, Park S H, Park S I, Park Y M, Park Y S, Patterson B, Sabbagh S, Saito K, Sajjad S, Sakamoto K, Seo D C, Seo S H, Seol J C, Shi Y, Song N H, Sun H J, Terzolo L, Walker M, Wang S J, Watanabe K, Welander A S, Woo H J, Woo I S, Yagi M, Yaowei Y, Yonekawa Y, Yoo K I, Yoo J W, Yoon G S, Yoon S W and the KSTAR Team 2011 Nucl. Fusion 51 094006
|
[13] |
Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H and Sun W G 2015 Phys. Plasmas 22 012503
|
[14] |
Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H and Sun W G 2016 Chin. Phys. B 25 095201
|
[15] |
Braams B J 1996 Contributions to Plasma Phys. 36 276
|
[16] |
Vold E L, Najmabadi F and Conn C R 1992 Nucl. Fusion 32 1433
|
[17] |
Rognlien T D, Braams B J and Knoll D A 1996 Contributions to Plasma Phys. 36 105
|
[18] |
Rognlien T D, Ryutov D D, Mattor N and Porter G D 1999 Phys. Plasmas 6 1851
|
[19] |
Dudson B D, Umansky M V, Xu X Q, Snyder P B and Wilson H R 2009 Comput. Phys. Commun. 180 1467
|
[20] |
Xu X Q, Umansky M V, Dudson B and Snyder R B 2008 Commun. Comput. Phys. 4 949
|
[21] |
Umansky M V, Xu X Q, Dudson B, LoDestro L L and Myra J R 2009 Comput. Phys. Commun. 180 887
|
[22] |
Landman I S and Janeschitz G 2007 J. Nucl. Mater. 363 1061
|
[23] |
Wang Z H, Xu X Q, Xia T Y, Yu D L, Zheng G Y, Huang J, Chen S Y, Zhong W L, Shi Z B, Sun A P, Dong J Q, Xu M, Sun T T and Yao L H 2014 25$th IAEA Fusion Energy Conference TH/P7-30
|
[24] |
Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K and Xiang N 2016 Chin. Phys. B 25 106601
|
[25] |
Wang Z H, Xu X Q, Xia T Y and Rognlien T D 2014 Nucl. Fusion 54 043019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|