Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 065201    DOI: 10.1088/1674-1056/26/6/065201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration

Xueke Wu(吴雪科)1, Huidong Li(李会东)1, Zhanhui Wang(王占辉)2, Hao Feng(冯灏)1, Yulin Zhou(周雨林)2
1 School of Science, Xihua University, Chengdu 610039, China;
2 Southwestern Institute of Physics, Chengdu 610041, China
Abstract  Using the trans-neut module of the BOUT++ code, we study how the fueling penetration depth of supersonic molecular beam injection (SMBI) is affected by plasma density and temperature profiles. The plasma densities and temperatures in L-mode are initialized to be a set of linear profiles with different core plasma densities and temperatures. The plasma profiles are relaxed to a set of steady states with different core plasma densities or temperatures. For a fixed gradient, the steady profiles are characterized by the core plasma density and temperature. The SMBI is investigated based on the final steady profiles with different core plasma densities or temperatures. The simulated results suggest that the SMB injection will be blocked by dense core plasma and high-temperature plasma. Once the core plasma density is set to be Ni0=1.4N0 (N0=1×1019 m-3) it produces a deeper penetration depth. When Ni0 is increased from 1.4N0 to 3.9N0 at intervals of 0.8N0, keeping a constant core temperature of Te0=725 eV at the radial position of ψ=0.65}, the penetration depth gradually decreases. Meanwhile, when the density is fixed at Ni0=1.4N0 and the core plasma temperature Te0 is set to 365 eV, the penetration depth increases. The penetration depth decreases as Te0 is increased from 365 eV to 2759 eV. Sufficiently large Ni0 or Te0 causes most of the injected molecules to stay in the scrape-off-layer (SOL) region, lowering the fueling efficiency.
Keywords:  tokamak      plasma fueling      SMBI      penetration depth      HL-2A  
Received:  05 November 2016      Revised:  13 March 2017      Accepted manuscript online: 
PACS:  52.25.Fi (Transport properties)  
  52.25.Ya (Neutrals in plasmas)  
Fund: Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 11605143), the Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province, China (Grant No. 05020732), the National Natural Science Foundation of China (Grant No. 11575055), the Fund from the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001), the National ITER Program of China (Contract No. 2014GB113000), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).
Corresponding Authors:  Huidong Li, Zhanhui Wang     E-mail:  huidongli888@163.com;zhwang@swip.ac.cn

Cite this article: 

Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林) Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration 2017 Chin. Phys. B 26 065201

[1] Sajjad S, Gao X, Ling B, Bhatti S H and Ang T 2009 Phys. Lett. A 373 1133
[2] Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Owen L W, Rasmussen D A, Maruyama S and Parks P B 2000 Phys. Plasma 7 1878
[3] Yao L, Zhao D, Feng B, Chen C, Zhou Y, Han X, Li Y, Bucalossi J and Duan X 2010 Plasma Sci. Technol. 12 529
[4] Yu D L, Chen C Y, Yao L H, Dong J Q, Feng B B, Zhou Y, Shi Z B, Zhou J, Han X Y, Zhong W L, Cui C H, Huang Y, Cao Z, Liu Yi, Yan L W, Yang Q W, Duan X R and Liu Y 2012 Nucl. Fusion 52 082001
[5] Xiao W W, Zou X L, Ding X T, Yao L H, Feng B B, Song X M, Song S D, Zhou Y, Liu Z T, Yuan B S, Sun H J, Ji X Q, Gao Y D, Li Y G, Yan L W, Yang Q W, Liu Y, Dong J Q, Duan X R, Liu Y and Pan C H 2010 Phys. Rev. Lett. 104 215001
[6] Xiao W W, Diamond P H, Zou X L, Dong J Q, Ding X T, Yao L H, Feng B B, Chen C Y, Zhong W L, Xu M, Yuan B S, Rhee T, Kwon J M, Shi Z B, Rao J, Lei G J, Cao J Y, Zhou J, Huang M, Yu D L, Huang Y, Zhao K J, Cui Z Y, Song X M, Gao Y D, Zhang Y P, Cheng J, Han X Y, Zhou Y, Dong Y B, Ji X Q, Yang Q W, Liu Y, Yan L W, Duan X R, Liu Y and the HL-2A Team 2012 Nucl. Fusion 52 114027
[7] Sun H J, Ding X T, Yao L H, Feng B B, Liu Z T, Duan X R and Yang Q W 2010 Plasma Phys. Control. Fusion 52 045003
[8] Cui X W, Cui Z Y, Feng B B, Pan Y D, Zhou H Y, Sun P, Fu B Z, Lu P, Dong Y B, Gao J M, Song S D, Yang Q W 2013 Chin. Phys. B 22 125201
[9] Xiao W W, Zou X L, Ding X T, Dong J Q, Yao L H, Song S D, Liu Z T, Gao Y D, Feng B B, Song X M, Yang Q W, Yan L W, Liu Y, Duan X R, Pan C H and Liu Y 2010 Rev. Sci. Instrum. 81 013506
[10] Yu D L, Chen C Y, Yao L H, Feng B B, Han X Y, Yang L M, Zhong W L, Zhou Y, Zhao K J, Huang Y, Liu Y, Yan L W, Yang Q W, Dong J Q and Duan X R 2010 Nucl. Fusion 50 035009
[11] Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G and Zonca F 2007 Nucl. Fusion 47 S264
[12] Kwon M, Oh Y K, Yang H L, Na H K, Kim Y S, Kwak J G, Kim W C, Kim J Y, Ahn JW, Bae Y S, Baek S H, Bak J G, Bang E N, Chang C S, Chang D H, Chavdarovski I, Chen Z Y, Cho K W, Cho M H, Choe W, Choi J H, Chu Y, Chung K S, Diamond P, Do H J, Eidietis N, England A C, Grisham L, Hahm T S, Hahn S H, Han W S, Hatae T, Hillis D, Hong J S, Hong S H, Hong S R, Humphrey D, Hwang Y S, Hyatt A, In Y K, Jackson G L, Jang Y B, Jeon Y M, Jeong, Jeong J I N Y, Jeong S H, Jhang H G, Jin J K, Joung M, Ju J, Kawahata K, Kim C H, Kim D H, Kim H S, Kim H S, Kim H K, Kim H T, Kim J H, Kim J C, Kim J S, Kim J S, Kim K M, Kim K M, Kim K P, Kim M K, Kim S H, Kim S S, Kim S T, Kim S W, Kim Y J, Kim Y K, Kim Y O, Ko W H, Kogi Y, Kong J D, Kubo S, Kumazawa R, Kwak S W, Kwon J M, Kwon O J, LeConte M, Lee D G, Lee D K, Lee D R, Lee D S, Lee H J, Lee J H, Lee K D, Lee K S, Lee S G, Lee S H, Lee S I, Lee S M, Lee T G, Lee W C, Lee W L, Leur J, Lim D S, Lohr J, Mase A, Mueller D, Moon K M, Mutoh T, Na Y S, Nagayama Y, Nam Y U, Namkung W, Oh B H, Oh S G, Oh S T, Park B H, Park D S, Park H, Park H T, Park J K, Park J S, Park K R, Park M K, Park S H, Park S I, Park Y M, Park Y S, Patterson B, Sabbagh S, Saito K, Sajjad S, Sakamoto K, Seo D C, Seo S H, Seol J C, Shi Y, Song N H, Sun H J, Terzolo L, Walker M, Wang S J, Watanabe K, Welander A S, Woo H J, Woo I S, Yagi M, Yaowei Y, Yonekawa Y, Yoo K I, Yoo J W, Yoon G S, Yoon S W and the KSTAR Team 2011 Nucl. Fusion 51 094006
[13] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H and Sun W G 2015 Phys. Plasmas 22 012503
[14] Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H and Sun W G 2016 Chin. Phys. B 25 095201
[15] Braams B J 1996 Contributions to Plasma Phys. 36 276
[16] Vold E L, Najmabadi F and Conn C R 1992 Nucl. Fusion 32 1433
[17] Rognlien T D, Braams B J and Knoll D A 1996 Contributions to Plasma Phys. 36 105
[18] Rognlien T D, Ryutov D D, Mattor N and Porter G D 1999 Phys. Plasmas 6 1851
[19] Dudson B D, Umansky M V, Xu X Q, Snyder P B and Wilson H R 2009 Comput. Phys. Commun. 180 1467
[20] Xu X Q, Umansky M V, Dudson B and Snyder R B 2008 Commun. Comput. Phys. 4 949
[21] Umansky M V, Xu X Q, Dudson B, LoDestro L L and Myra J R 2009 Comput. Phys. Commun. 180 887
[22] Landman I S and Janeschitz G 2007 J. Nucl. Mater. 363 1061
[23] Wang Z H, Xu X Q, Xia T Y, Yu D L, Zheng G Y, Huang J, Chen S Y, Zhong W L, Shi Z B, Sun A P, Dong J Q, Xu M, Sun T T and Yao L H 2014 25$th IAEA Fusion Energy Conference TH/P7-30
[24] Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K and Xiang N 2016 Chin. Phys. B 25 106601
[25] Wang Z H, Xu X Q, Xia T Y and Rognlien T D 2014 Nucl. Fusion 54 043019
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[3] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[4] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[5] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[6] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[7] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[8] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[9] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[10] Generalized Drude model and electromagnetic screening in metals and superconductors
Da Wang(王达). Chin. Phys. B, 2018, 27(5): 057401.
[11] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[12] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[13] Favourable scenarios established by SMBI for the realization of the ELMy H-mode at HL-2A
Zheng-Ying Cui(崔正英), Yuan Xu(徐媛), Bei-Bin Feng(冯北滨), Yu-Hong Xu(许宇鸿), Xuan-Tong Ding(丁玄同), Xiao-Quan Ji(季小全), Yong-Gao Li(李永高), Zhong-Bing Shi(石中兵), Wu-Lv Zhong(钟武律), Min Jiang(蒋敏), Shao-Dong Song(宋绍栋), Jun Cheng(程均), Jin-Ming Gao(高金明), Jian-Yong Cao(曹建勇), Chun-Feng Dong(董春凤), Kai Zhang(张凯), Cheng-Yuan Chen(陈程远), Mei Huang(黄梅), Qing-Wei Yang(杨青巍), Xu-Ru Duan(段旭如), HL-2A Team. Chin. Phys. B, 2017, 26(8): 085205.
[14] Simulations of fast component and slow component of SMBI on HL-2A tokamak
Yong-Fu Shi(史永福), Zhan-Hui Wang(王占辉), Qi-Long Ren(任启龙), Ai-Ping Sun(孙爱萍), De-Liang Yu(余德良), Wen-Feng Guo(郭文峰), Min Xu(许敏). Chin. Phys. B, 2017, 26(5): 055201.
[15] Investigation of molecular penetration depth variation with SMBI fluxes
Yu-Lin Zhou(周雨林), Zhan-Hui Wang(王占辉), Min Xu(许敏), Qi Wang(王奇), Lin Nie(聂林), Hao Feng(冯灏), Wei-Guo Sun(孙卫国). Chin. Phys. B, 2016, 25(9): 095201.
No Suggested Reading articles found!