Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060501    DOI: 10.1088/1674-1056/26/6/060501
GENERAL Prev   Next  

Equilibrium dynamics of the sub-Ohmic spin-boson model under bias

Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华)
Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  

Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σz for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω)∝ωs is found to be universal and independent of the bias ε and the coupling strength α (except at the quantum critical point α=αc and ε=0). Our NRG data also show C(ω)∝χ2ωs for a wide range of parameters, including the biased strong coupling regime (ε≠0 and α > αc), supporting the general validity of the Shiba relation. Close to the quantum critical point αc, the dependence of C(ω) on α and ε is understood in terms of the competition between ε and the crossover energy scale ω0* of the unbiased case. C(ω) is stable with respect to ε for εε*. For εε*, it is suppressed by ε in the low frequency regime. We establish that ε*∝(ω0*)1/θ holds for all sub-Ohmic regime 0≤s < 1, with θ=2/(3s) for 0 < s≤1/2 and θ=2/(1+s) for 1/2 < s < 1. The variation of C(ω) with α and ε is summarized into a crossover phase diagram on the α-ε plane.

Keywords:  spin-boson model      numerical renormalization group      quantum phase transition      dynamical correlation function  
Received:  21 January 2017      Revised:  23 February 2017      Accepted manuscript online: 
PACS:  05.10.Cc (Renormalization group methods)  
  05.30.Jp (Boson systems)  
  64.70.Tg (Quantum phase transitions)  
  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

Corresponding Authors:  Ning-Hua Tong     E-mail:  nhtong@ruc.edu.cn

Cite this article: 

Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华) Equilibrium dynamics of the sub-Ohmic spin-boson model under bias 2017 Chin. Phys. B 26 060501

[1] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 59 1
[2] Weiss U 1993 Quantum Dissipative Systems (Singapore: World Scientific)
[3] Shnirman A, Makhlin Y and Schon G 2002 Phys. Scr. T102 147
[4] Tong N H and Vojta M 2006 Phys. Rev. Lett. 97 016802
[5] Rosenberg D, Nalbach P and Osheroff D D 2003 Phys. Rev. Lett. 90 195501
[6] Si Q, Rabello S, Ingersent K and Smith J L 2001 Nature 413 804
[7] Seoanez C, Guinea F and Castro Neto A H 2007 Europhys. Lett. 78 60002
[8] Mühlbacher L and Egger R 2004 Chem. Phys. 296 193
[9] Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D and Bimberg D 87 157401
[10] Kehrein S and Mielke A 219 313
[11] Bulla R, Tong N H and Vojta M 91 170601
[12] Bulla R, Lee H J, Tong N H and Vojta M 2005 Phys. Rev. B 71 045122
[13] Guo C, Weichselbaum A, von Delft J and Vojta M 2012 Phys. Rev. Lett. 108 160401
[14] Winter A, Rieger H, Vojta M and Bulla R 2009 Phys. Rev. Lett. 102 030601
[15] Alvermann A and Fehske H 2009 Phys. Rev. Lett. 102 150601
[16] Chin A and Turlakov M 2006 Phys. Rev. B 73 075311
[17] Anders F B, Bulla R and Vojta M 2007 Phys. Rev. Lett. 98 210402
[18] Lü Z G and Zheng H 2007 Phys. Rev. B 75 054302
[19] Zheng H and Lü Z G 2013 J. Chem. Phys. 138 174117
[20] Florens S, Freyn A, Venturelli D and Narayanan R 2011 Phys. Rev. B 84 155110
[21] Le Hur K, Doucet-Beauprè P and Hofstetter W 2007 Phys. Rev. Lett. 99 126801
[22] Yao Y, Duan L, Lü Z, Wu C Q and Zhao Y 2013 Phys. Rev. E 88 023303
[23] Liu H B, An J H, Chen C, Tong Q J, Luo H G and Oh C H 2013 Phys. Rev. A 87 052139
[24] Kast D and Ankerhold J 2013 Phys. Rev. Lett. 110 010402
[25] Nalbach P and Torwart M 2012 Phys. Rev. B 81 054308
[26] Le Hur K 2012 Phys. Rev. B 85 140506
[27] Goldstein M, Devoret M H, Houzet M and Glazman L I 2013 Phys. Rev. Lett. 110 017002
[28] Egger D J and Wilhelm F K 2013 Phys. Rev. Lett. 111 163601
[29] Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
[30] Wilson K G 1975 Rev. Mod. Phys. 47 773
[31] Hou Y H and Tong T H 78 127
[32] Tong N H and Hou Y H 2012 Phys. Rev. B 85 144425
[33] Bulla R, Costi T A and Vollhardt D 2001 Phys. Rev. B 64 045103
[34] Liu T and Cao Z X, 2013 arXiv: 1312.4606 [quant-ph]
[35] Sassetti M and Weiss U 1990 Phys. Rev. Lett. 65 2262
[36] Egger R, Grabert H and Weiss U 1997 Phys. Rev. E 55 R3809
[37] Volker K 1998 Phys. Rev. B 58 1862
[38] Costi T A and Kieffer C 1996 Phys. Rev. Lett. 76 1683
[39] Keil M and Schoeller H 2001 Phys. Rev. B 63 180302
[40] Florens S, Venturelli D and Narayanan R 2010 Lect. Notes Phys. 802 145
[41] Zhao C J, Lü Z G, and Zheng H 2011 Phys. Rev. E 80 011114
[42] Gan C and Zheng H 2009 Phys. Rev. E 80 041106
[43] Vojta M, Tong N H and Bulla R 94 070604
[44] Vojta M, Tong N H and Bulla R 102 249904(E)
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[5] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[6] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[7] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[8] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[13] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[14] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[15] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
No Suggested Reading articles found!