|
|
Dynamical correlation functions of the quadratic coupling spin-Boson model |
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华) |
Department of Physics, Renmin University of China, Beijing 100872, China |
|
|
Abstract The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions CO(ω), with the operator Ô taken as σx, σz, and X, respectively. In the weak-coupling regime α < αc, these functions show power law ω-dependence in the small frequency limit, with the powers 1+2s, 1+2s, and s, respectively. At the critical point α=αc of the boson-unstable quantum phase transition, the critical exponents yO of these correlation functions are obtained as yσx=yσz=1-2s and yX=-s, respectively. Here s is the bath index and X is the boson displacement operator. Close to the spin flip point, the high frequency peak of Cσx(ω) is broadened significantly and the line shape changes qualitatively, showing enhanced dephasing at the spin flip point.
|
Received: 20 February 2017
Revised: 21 March 2017
Accepted manuscript online:
|
PACS:
|
05.10.Cc
|
(Renormalization group methods)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
05.30.Jp
|
(Boson systems)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03). |
Corresponding Authors:
Ning-Hua Tong
E-mail: nhtong@ruc.edu.cn
|
Cite this article:
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华) Dynamical correlation functions of the quadratic coupling spin-Boson model 2017 Chin. Phys. B 26 060502
|
[1] |
Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 59 1
|
[2] |
Weiss U 1993 Quantum Dissipative Systems (Singapore: World Scientific)
|
[3] |
Caldeira A O and Leggett A J 1983 Ann. Phys. 149 374
|
[4] |
Kehrein S and Mielke A 219 313
|
[5] |
Bulla R, Tong N H and Vojta M 91 170601
|
[6] |
Bulla R, Lee H J, Tong N H and Vojta M 2005 Phys. Rev. B 71 045122
|
[7] |
Zhao C J, Lü Z G and Zheng H 2011 Phys. Rev. E 80 011114
|
[8] |
Zheng H and Lü Z G 2013 J. Chem. Phys. 138 174117
|
[9] |
Vojta M 2006 Phil. Mag. 86 1807
|
[10] |
Vojta M, Tong N H and Bulla R 94 070604
|
[11] |
Vojta M, Tong N H and Bulla R 102 249904(E)
|
[12] |
Vojta M, Bulla R, Güttge F and Anders F 81 075122
|
[13] |
Winter A, Rieger H, Vojta M and Bulla R 2009 Phys. Rev. Lett. 102 030601
|
[14] |
Alvermann A and Fehske H 2009 Phys. Rev. Lett. 102 150601
|
[15] |
Guo C, Weichselbaum A, von Delft J and Vojta M 2012 Phys. Rev. Lett. 108 160401
|
[16] |
Hou Y H and Tong T H 78 127
|
[17] |
Tong N H and Hou Y H 2012 Phys. Rev. B 85 144425
|
[18] |
Recati A, Fedichev P O, Zwerger W, von Delft J and Zoller P 94 040404
|
[19] |
Tong N H and Vojta M 97 016802
|
[20] |
Yu L B, Tong N H, Xue Z Y, Wang Z D and Zhu S L 55 1557
|
[21] |
Orth P P, Stanic I and Le Hur K 77 051601(R)
|
[22] |
Porras D, Marquardt F, von Delft J and Cirac J I 78 010101(R)
|
[23] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 296 886
|
[24] |
Bertet P, Chiorescu I, Burkard G, Semba K, Harmans C J P M, DiVincenzo D P and Mooij J E 95 257002
|
[25] |
Ithier G, Collin E, Joyez P, Meeson P J, Vion D, Esteve D, Chiarello F, Shnirman A, Makhlin Y, Schriefl J and Schön G 2005 Phys. Rev. B 72 134519
|
[26] |
Yoshihara F, Harrabi K, Niskanen A O, Nakamura Y and Tsai J S 97 167001
|
[27] |
Kakuyanagi K, Meno T, Saito S, Nakano H, Semba K, Takayanagi H, Deppe F and Shnirman A 98 047004
|
[28] |
Makhlin Y and Shnirman A 92 178301
|
[29] |
Bergli J, Galperin Y M and Altshuler B L 74 024509
|
[30] |
Cywiński L 90 042307
|
[31] |
Balian S J, Liu R B and Monteiro T S 91 245416
|
[32] |
Muljarov E A and Zimmermann R 93 237401
|
[33] |
Borri P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D and Bimberg D 87 157401
|
[34] |
Maghrebi M F, Krüger M and Kardar M 93 014309
|
[35] |
Zheng D C and Tong N H 2016 arXiv: 1612.09437v1 [cond-mat.mes-hall]
|
[36] |
Wilson K G 1975 Rev. Mod. Phys. 47 773
|
[37] |
Bulla R, Costi T A and Pruschke T 2008 Rev. Mod. Phys. 80 395
|
[38] |
Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 6 772
|
[39] |
Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
|
[40] |
Bulla R, Costi T A and Vollhardt D 2001 Phys. Rev. B 64 045103
|
[41] |
Peters R, Pruschke T and Anders F J 74 245114
|
[42] |
Weichselbaum A and von Delft J 99 076402
|
[43] |
Yoshida M, Whitaker M A and Oliveira L N 41 9403
|
[44] |
Oliveira W C and Oliveira L N \textbf 49 11986
|
[45] |
Bulla R, Hewson A C and Pruschke T 10 8365
|
[46] |
Campo V L and Oliveira L N 72 104432
|
[47] |
Žitko R and Pruschke T 79 085106
|
[48] |
Žitko R 84 085142
|
[49] |
Freyn A and Florens S 79 121102(R)
|
[50] |
Osolin Ž and Žitko R 87 245135
|
[51] |
Lü Z G and Zheng H 2007 Phys. Rev. B 75 054302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|