Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 058101    DOI: 10.1088/1674-1056/26/5/058101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO2 nanocomposites under visible light

Ming-Ye Sun(孙明烨), You-Jin Zheng(郑友进), Lei Zhang(张蕾), Li-Ping Zhao(赵立萍), Bing Zhang(张冰)
School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
Abstract  Carbon nanodots (CDs) with visible absorption band and TiO2 are integrated to enhance the photosensitivity of TiO2. The CD/TiO2 nanocomposites show obvious CD-coverage-dependent photocatalytic performance. The CD/TiO2 nanocomposites with moderate CD coverge exhibit the highest photocatalytic activity after being irradiated with visible light, which is more excellent than that of TiO2. Too little CD coverage could result in poor visible light absorption, which limits the photocatalytic performance of CD/TiO2 nanocomposites. While, too much CD coverage weakens the photocatalytic activity of CD/TiO2 nanocomposites by restraining the extraction of conduction band electrons within TiO2 to generate active oxygen radicals and the electron transfer (ET) process from CDs to TiO2. These results indicate that rational regulation of CD coverage and the realization of efficient ET process are important means to optimize the photocatalytic performance of CD/TiO2 nanocomposites.
Keywords:  carbon nanodots      TiO2      photocatalysis      electron transfer  
Received:  09 January 2017      Revised:  31 January 2017      Accepted manuscript online: 
PACS:  81.05.U- (Carbon/carbon-based materials)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  78.47.jd (Time resolved luminescence)  
  78.67.Sc (Nanoaggregates; nanocomposites)  
Fund: Project supported by the Scientific Research Starting Fund for Doctor of Mudanjiang Normal University, China (Grant No. MNUB201508), the Youth Science Foundation of Heilongjiang Province, China (Grant No. QC2016007), and the National Natural Science Foundation of China (Grant No. 61604065).
Corresponding Authors:  Bing Zhang     E-mail:  mnuzhangbing@126.com

Cite this article: 

Ming-Ye Sun(孙明烨), You-Jin Zheng(郑友进), Lei Zhang(张蕾), Li-Ping Zhao(赵立萍), Bing Zhang(张冰) Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO2 nanocomposites under visible light 2017 Chin. Phys. B 26 058101

[1] Osterloh F E 2013 Chem. Soc. Rev. 42 2294
[2] Fan W Q, Zhang Q H and Wang Y 2013 Phys. Chem. Chem. Phys. 15 2632
[3] Zhou W L and Zhao Z Y 2016 Chin. Phys. B 25 037102
[4] Luo J S, Karuturi S K, Liu L J, Su L T, Tok A L Y and Fan H J 2012 Sci. Rep. 2 451
[5] Chen X B and Mao S S 2007 Chem. Rev. 107 2891
[6] Wang T, Chen J F and Le Y 2014 Acta Phys. Sin. 63 207302 (in Chinese)
[7] Hernández-Alonso M D, Fresno F, Suárez S and Coronado J M 2009 Energy Environ. Sci. 2 1231
[8] Yu B Y and Kwak S 2012 J. Mater. Chem. 22 8345
[9] Kamat P V 2012 Acc. Chem. Res. 45 1906
[10] Kamat P V, Tvrdy K, Baker D R and Radich J G 2010 Chem. Rev. 110 6664
[11] Kalyanasundaram K and Grátzel M 2012 J. Mater. Chem. 22 24190
[12] Grátzel M 2009 Acc. Chem. Res. 42 1788
[13] Wang Y F and Hu A G 2014 J. Mater. Chem. C 2 6921
[14] Ding C Q, Zhu A W and Tian Y 2014 Acc. Chem. Res. 47 20
[15] Wei W L, Xu C, Wu L, Wang J S, Ren J S and Qu X G 2014 Sci. Rep. 4 3564
[16] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2013 Chem. Soc. Rev. 42 2824
[17] Bartelmess J, Quinn S J and Giordani S 2015 Chem. Soc. Rev. 44 4672
[18] Luo G S, Huang S T, Zhao N, Cui Z H and Guo X X 2015 Chin. Phys. B 24 088102
[19] Pan C N, He J and Fang M F 2016 Chin. Phys. B 25 078102
[20] Choi H, Ko S, Choi Y, Joo P, Kim T, Lee B R, Jung J, Choi H J, Cha M, Jeong J, Hwang I, Song M H, Kim B and Kim J Y 2013 Nat. Photon. 7 732
[21] Li H T, Kang Z H, Liu Y and Lee S 2012 J. Mater. Chem. 22 24230
[22] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B L, Veca L M and Xie S Y 2006 J. Am. Chem. Soc. 128 7756
[23] Qu S N, Wang X Y, Lu Q P, Liu X Y and Wang L J 2012 Angew. Chem. Int. Ed. 51 12215
[24] Qu S N, Zhou D, Li D, Ji W Y, Jing P T, Han D, Liu L, Zeng H B and Shen D Z 2016 Adv. Mater. 28 3516
[25] Yu H J, Zhao Y F, Zhou C, Shang L, Peng Y, Cao Y H, Wu L Z, Tung C and Zhang T R 2014 J. Mater. Chem. A 2 3344
[26] Sun M X, Ma X Q, Chen X, Sun Y J, Cui X L and Lin Y H 2014 RSC Adv. 4 1120
[27] Zhang X, Wang F, Huang H, Li H T, Han X, Liu Y and Kang Z H 2013 Nanoscale 5 2274
[28] Sun M Y, Qu S N, Ji W Y, Jing P T, Li D, Qin L, Cao J S, Zhang H, Zhao J L and Shen D Z 2015 Phys. Chem. Chem. Phys. 17 7966
[29] Qu D, Zheng M, Du P, Zhou Y, Zhang L G, Li D, Tan H Q, Zhao Z, Xie Z G and Sun Z C 2013 Nanoscale 5 12272
[30] Kochuveedu S T, Jang Y J, Jang Y H, Lee W J, Cha M, Shin H, Yoon S, Lee S, Kim S O, Shin K, Steinhart M and Kim D H 2011 Green Chem. 13 3397
[31] Cui G W, Wang W L, Ma M Y, Zhang M, Xia X Y, Han F Y, Shi X F, Zhao Y Q, Dong Y B and Tang B 2013 Chem. Commun. 49 6415
[32] Ming H, Ma Z, Liu Y, Pan K M, Yu H, Wang F and Kang Z H 2012 Dalton Trans. 41 9526
[33] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B and Lee S 2010 Angew. Chem. Int. Ed. 49 4430
[34] Li P X, Feng M Y, Wu C P, Li S B, Hou L T, Ma J S and Yin C H 2015 Acta Phys. Sin. 64 137601 (in Chinese)
[35] Qu S N, Liu X Y, Guo X Y, Chu M H, Zhang L G and Shen D Z 2014 Adv. Funct. Mater. 24 2689
[36] Wu T X, Liu G M, Zhao J C, Hidaka H and Serpone N 1998 J. Phys. Chem. B 102 5845
[37] Fu H B, Zhang S C, Xu T G, Zhu Y F and Chen J M 2008 Environ. Sci. Technol. 42 2085
[38] Abdellah M, Žídek K, Zheng K B, Chábera P, Messing M E and Pullerits T 2013 J. Phys, Chem, Lett. 4 1760
[39] Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P V 2008 J. Am. Chem. Soc. 130 4007
[40] Sun J H, Zhao J L and Masumoto Y 2013 Appl. Phys. Lett. 102 053119
[41] Jin S Y and Lian T Q 2009 Nano Lett. 9 2448
[42] Berezin M Y and Achilefu S 2010 Chem. Rev. 110 2641
[1] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[2] Near-infrared photocatalysis based on upconversion nanomaterials
Xingyuan Guo(郭星原), Zhe Wang(王哲), Shengyan Yin(尹升燕), and Weiping Qin(秦伟平). Chin. Phys. B, 2022, 31(10): 108201.
[3] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[4] Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation
Xianyin Song(宋先印), Hongtao Zhou(周洪涛), and Changzhong Jiang(蒋昌忠). Chin. Phys. B, 2021, 30(5): 058505.
[5] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[6] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[7] Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚). Chin. Phys. B, 2021, 30(11): 114214.
[8] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[9] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[10] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[11] Elastic properties of anatase titanium dioxide nanotubes: A molecular dynamics study
Kang Yang(杨康), Liang Yang(杨亮), Chang-Zhi Ai(艾长智), Zhao Wang(王赵), Shi-Wei Lin(林仕伟). Chin. Phys. B, 2019, 28(10): 103102.
[12] Nanoforest-like CdS/TiO2 heterostructure composites: Synthesis and photoelectrochemical application
Shi Su(苏适), Jinwen Ma(马晋文), Wanlong Zuo(左万龙), Jun Wang(汪俊), Li Liu(刘莉), Shuang Feng(冯爽), Tie Liu(刘铁), Wuyou Fu(付乌有), Haibin Yang(杨海滨). Chin. Phys. B, 2018, 27(8): 088802.
[13] Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope
Chaoyu Guo(郭钞宇), Xiangzhi Meng(孟祥志), Qin Wang(王钦), Ying Jiang(江颖). Chin. Phys. B, 2018, 27(7): 077301.
[14] Enhanced transient photovoltaic characteristics of core-shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film
Kui-Ying Li(李葵英), Lun Ren(任伦), Tong-De Shen(沈同德). Chin. Phys. B, 2018, 27(6): 067305.
[15] Electronic structures and optical properties of HfO2-TiO2 alloys studied by first-principles GGA+ U approach
Jin-Ping Li(李金平), Song-He Meng(孟松鹤), Cheng Yang(杨程), Han-Tao Lu(陆汉涛), Takami Tohyama(遠山貴巳). Chin. Phys. B, 2018, 27(2): 027101.
No Suggested Reading articles found!