|
|
Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films |
Peng Kuang(况鹏)1,2, Xiao-Long Han(韩小龙)3, Xing-Zhong Cao(曹兴忠)1, Rui Xia(夏锐)1, Peng Zhang(张鹏)1, Bao-Yi Wang(王宝义)1,2 |
1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2 University of Chinese Academy of Sciences, Beijing 100039, China;
3 School of Chemical Engineering, Northwest University, Xi'an 710069, China |
|
|
Abstract Doppler broadening and coincidence Doppler broadening of annihilation radiation experiments have been performed in three kinds of polyethylene glycol (PEG) membrane formed with different average molecular weight using the tunable monoenergy slow positron probe as a function of implantion energy. The obtained positron annihilation parameters are interpreted from two aspects: surface effect and differences in micro-structure or chemical environment of positron annihilation. The experimental results show that the regulation of densification of PEG molecular packing and distribution uniformity from the near surface layer to the bulk region in the film forming process can be well realized by changing its molecular weight. Combining a variable monoenergetic slow positron beam and these two positron annihilation spectroscopy methods is a powerful tool to study positron annihilation characteristics and for polymeric thin-film fine structure analysis.
|
Received: 20 January 2017
Revised: 23 February 2017
Accepted manuscript online:
|
PACS:
|
78.70.Bj
|
(Positron annihilation)
|
|
61.05.-a
|
(Techniques for structure determination)
|
|
68.47.Mn
|
(Polymer surfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575205, 11475197, 11675188, and 11475193). |
Corresponding Authors:
Bao-Yi Wang
E-mail: wangboy@ihep.ac.cn
|
Cite this article:
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义) Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films 2017 Chin. Phys. B 26 057802
|
[1] |
Jean Y C, Dai G H, Shi H, Suzuki R and Kobayashi Y 1994 AIP Conf. Proc. 129
|
[2] |
Kobayashi Y, Kojima I, Hishita S, Suzuki T, Asari E and Kitajima M 1995 Phys. Rev. B 52 823
|
[3] |
Yang J, Zhang P, Cheng G D, Li D X, Wu H B, Li Z X, Cao X Z, Jia Q J, Yu R S and Wang B Y 2013 Appl. Surf. Sci. 280 109
|
[4] |
An Q F, Ji Y L, Hung W S, Lee K R and Gao C J 2013 Macromolecules 46 2228
|
[5] |
Chao W C, Huang S H, Wei S W, Huang Y H, Liao K S, Lai C L, Tsai H A and Lee K R 2013 J. Membrane Sci. 429 34
|
[6] |
Chen Z, Ito K, Yanagishita H, Oshima N, Suzuki R and Kobayashi Y 2011 J. Phys. -Conf. Ser. 262 012013
|
[7] |
Djourelov N, Suzuki T, Yu R S, Shantarovich V and Kondo K 2004 Chem. Phys. 302 179
|
[8] |
Huang S H, Hung W S, Liaw D J, Tsai H A, Jiang G J, Lee K R and Lai J Y 2010 Polymer 51 1370
|
[9] |
Tung K L, Jean Y C, Nanda D, Lee K R, Hung W S, Lo C H and Lai J Y 2009 J. Membrane Sci. 343 147
|
[10] |
Djourelov N, Suzuki T, Yu R S and Ito Y 2005 Nucl. Instrum. Meth. Phys. Res. Sect. A 540 487
|
[11] |
Han X L, Wang L, Li J D, Zhan X, Chen J A and Yang J C 2011 J. Appl. Polym. Sci. 119 3413
|
[12] |
Xia R, Cao X, Gao M, Zhang P, Zeng M, Wang B and Wei L 2017 Phys. Chem. Chem. Phys. 19 3616
|
[13] |
Yu R S, Hao X P, Ma Y Y, Wang P, Qin X B, Zhang Z, Wang B Y, Wei L, Suzuki T, Ito Y and Shantarovich V P 2008 Appl. Surf. Sci. 255 205
|
[14] |
Hirata K, Kobayashi Y, Saitoh Y and Hishita S 2000 Nucl. Instrum. Meth. B 171 236
|
[15] |
Palacio C A, Djourelov N, Kuriplach J, Dauwe C, Laforest N and Segers D 2007 Phys. Status Solidi C 4 3755
|
[16] |
Djourelov N, Dauwe C, Palacio C A, Laforest N and Bas C 2007 Phys. Status Solidi C 4 3710
|
[17] |
Scholes F H, Furman S A, Hughes A E, Hill A J, Tuomisto F, Saarinen K and Pas S J 2006 JCT Res. 3 105
|
[18] |
Hu W, Han X, Liu L, Zhang X, Xue J, Wang B, Zhang P and Cao X 2017 Can. J. Chem. Eng. 95 364
|
[19] |
Bamford D, Dlubek G, Dommet G, Horing S, Lupke T, Kilburn D and Alam M A 2006 Polymer 47 3486
|
[20] |
Sato K, Ito K, Hirata K, Yu R S and Kobayashi Y 2005 Phys. Rev. B 71 012201
|
[21] |
Uedono A, Suzuki R, Ohdaira T, Uozumi T, Ban M, Kyoto M, Tanigawa S and Mikado T 1998 J. Polym. Sci. Pol. Phys. 36 2597
|
[22] |
Gidley D W, Lynn K G, Petkov M P, Weber M H, Sun J N and Yee A F 2001 New Directions in Antimatter Chemistry and Physics pp. 151-171
|
[23] |
Hirata K, Kobayashi Y, Hishita S, Zhao X, Itoh Y, Ohdaira T, Suzuki R and Ujihira Y 1997 Nucl. Instrum. Meth. B 121 267
|
[24] |
Cao H, Yuan J P, Zhang R, Huang C M, He Y, Sandreczki T C, Jean Y C, Nielsen B, Suzuki R and Ohdaira T 1999 Macromolecules 32 5925
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|