Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 050502    DOI: 10.1088/1674-1056/26/5/050502
GENERAL Prev   Next  

Generalized analytical solutions for certain coupled simple chaotic systems

G Sivaganesh1, A Arulgnanam2
1 Department of Physics, Alagappa Chettiar College of Engineering & Technology, Karaikudi, Tamilnadu-630 004, India;
2 Department of Physics, St. John's College, Palayamkottai, Tamilnadu-627 002, India
Abstract  We present a generalized analytical solution to the normalized state equations of a class of coupled simple second-order non-autonomous circuit systems. The analytical solutions thus obtained are used to study the synchronization dynamics of two different types of circuit systems, differing only by their constituting nonlinear element. The synchronization dynamics of the coupled systems is studied through two-parameter bifurcation diagrams, phase portraits, and time-series plots obtained from the explicit analytical solutions. Experimental figures are presented to substantiate the analytical results. The generalization of the analytical solution for other types of coupled simple chaotic systems is discussed. The synchronization dynamics of the coupled chaotic systems studied through two-parameter bifurcation diagrams obtained from the explicit analytical solutions is reported for the first time.
Keywords:  synchronization      unidirectional coupling      master stability function  
Received:  16 December 2016      Revised:  24 January 2017      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  G Sivaganesh     E-mail:  sivaganesh.nld@gmail.com

Cite this article: 

G Sivaganesh, A Arulgnanam Generalized analytical solutions for certain coupled simple chaotic systems 2017 Chin. Phys. B 26 050502

[1] Pecora M and Carroll L 1990 Phys. Rev. Lett. 64 821
[2] Chua L O, Kocarev L, Eckert K and Itoh M 1992 Int. J. Bif. Chaos 2 705
[3] Chua L O, Kocarev L, Eckert K and Itoh M 1993 J. Cir. Sys. Comp 3 93
[4] Murali K and Lakshmanan M 1993 Phys. Rev. E 48 1624
[5] Murali K and Lakshmanan M 1994 Phys. Rev. E 49 4882
[6] Murali K and Lakshmanan M 1995 Int. J. Bif. Chaos 5 563
[7] Pecora M, Carroll L, Johnson A, Mar J and Heagy J F 1997 Chaos 7 520
[8] Murali K, Lakshmanan M and Chua L O 1994 IEEE Trans. Circ. Sys. I 41 462
[9] Zhang J, Huang S, Pang S, Wang M and Gao S 2015 Chin. Phys. lett. 32 120502
[10] Li X, Zhao Z, Zhang J and Sun L 2016 Chin. Phys. B 25 060504
[11] Shi X and Zhang J 2016 Chin. Phys. B 25 060502
[12] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[13] Ogorzalek M J 1993 IEEE Trans. Circ. Sys. I 40 693
[14] Lakshmanan M and Murali K 1994 Current Science 67 989
[15] Matsumoto T 1984 IEEE Trans. Circ. Sys. 31 1055
[16] Kennedy M P 1992 Frequenz 46 66
[17] Venkatesan A, Murali K and Lakshmanan M 1999 Phys. Lett. A 259 246
[18] Thamilmaran K, Lakshmanan M and Murali K 2000 Int. J. Bif. Chaos 10 1781
[19] Thamilmaran K and Lakshmanan M 2001 Int. J. Bif. Chaos 12 783
[20] Lacy J G 1996 Int. J. Bif. Chaos 6 2097
[21] Arulgnanam A, Thamilmaran K and Daniel M 2009 Chaos Soliton. Fract. 42 2246
[22] Bao B C, Li Q D, Wang N and Xu Q 2016 Chaos 26 043111
[23] Lakshmanan M and Murali K 1995 Phil. Trans. R. Soc. Lond. A 353 33
[24] Sivaganesh G 2014 Chin. J. Phys. 52 1760
[25] Arulgnanam A, Thamilmaran K and Daniel M 2015 Chin. J. Phys. 53 060702
[26] Lakshmanan M and Murali K 1996 Chaos in Nonlinear Oscillators: Controlling and Synchronization (Singapore: World Scientific) p. 161
[27] Lakshmanan M and Rajasekar S 2003 Nonlinear Dynamics: Integrability, Chaos and Patterns (Berlin: Springer) p. 171
[28] Thamilmaran K, Senthil Kumar D V, Lakshmanan M and Ishaq Ahamed A 2005 Int. J. Bif. Chaos 15 637
[29] Sivaganesh G 2015 Chin. Phys. Lett. 32 010503
[30] Venkatesh P R, Venkatesan A and Lakshmanan M 2016 Pramana 86 1195
[31] Sivaganesh G and Arulgnanam A 2016 J. Korean Phys. Soc. 69 1631
[32] Pecora M and Carroll L 1998 Phys. Rev. Lett. 80 2109
[33] Huang L, Chen Q, Lai Y C and Pecora M 2009 Phys. Rev. E 80 036204
[34] Sivaganesh G 2016 J. Korean Phys. Soc. 68 628
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[14] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!