Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 037502    DOI: 10.1088/1674-1056/24/3/037502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)

Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元)
State Key Lab of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China
Abstract  

Single phase of Fe3+-doped α-Ga2-xFexO3 (α -GFxO, x=0.1, 0.2, 0.3, 0.4) is synthesized by treating the β -Ga2-xFexO3 (β -GFxO) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe3+ content. Calorimetric measurements show that the temperature of the phase transition from α -GFxO to β -GFxO increases, while the associated enthalpy change decreases upon increasing Fe3+ content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+ content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe3+ ions is antiferromagnetic. Remnant magnetization is observed in the Fe3+-doped α -GFxO and is attributed to the spin glass in the magnetic sublattice. At high Fe3+ doping level (x=0.4), two evident peaks are observed in the image part of the AC susceptibility χ" ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α -GF0.4O is suggested to be the behavior of two spin glasses.

Keywords:  α-Ga2O3      susceptibility      superexchange interaction      spin glass  
Received:  23 August 2014      Revised:  13 October 2014      Accepted manuscript online: 
PACS:  75.30.Hx (Magnetic impurity interactions)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2010CB731605), the National Science Fund for Distinguished Young Scholars of China (Grant No. 51025103), the National Natural Science Foundation of China (Grant Nos. 51172198 and 51102206), the Natural Science Foundation of Hebei Province, China (Grant No. E2014203144), the Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province, China (Grant No. YQ2014009), and the Research Program of the College Science & Technology of Hebei Province, China (Grant No. QN2014047).

Corresponding Authors:  Xiang Jian-Yong     E-mail:  jyxiang@ysu.edu.cn

Cite this article: 

Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元) Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4) 2015 Chin. Phys. B 24 037502

[1] Roy R 1952 Journal of the American Chemical Society 74 4
[2] Machon D 2006 Phys. Rev. B 2006 9
[3] Yusa H 2008 Phys. Rev. B 77 9
[4] Kaneko K, Kakeya I, Komori S and Fujita S 2013 J. Appl. Phys. 113
[5] Hojo H, Fujita K, Tanaka K and Hirao K 2004 Ferromagnetism in Fe-doped β -Ga2O3 Prepared by a Solid State Reaction. MRS Proceedings (Cambridge: Cambridge University Press) p. I4.25
[6] Kim I G, Yeom T H, Lee S H, Yu Y M, Shin H W and Choh S H 2001 J. Appl. Phys. 89 4470
[7] Lee S W, Ryu Y G, Ahn G Y, Park S I and Kim C S 2004 Phys. Stat. Sol. 1 3550
[8] López I, Utrilla A D, Nogales E, Méndez B, Piqueras J, Peche A, Ramírez-Castellanos J and González-Calbet J M 2012 J. Phys. Chem. C 116 3935
[9] Lovejoy T C, Chen R, Yitamben E N, Shutthanadan V, Heald S M, Villora E G, Shimamura K, Zheng S, Dunham S T, Ohuchi F S and Olmstead M A 2012 J. Appl. Phys. 111 123716
[10] Song Y P, Wang P W, Xu X Y, Wang Z, Li G H and Yu D P 2006 Physica E 31 67
[11] Pickart S J, Nathans R and Alperin H A 1964 J. Phys. France 25 542
[12] Naresh N 2011 AIP Adv. 1 12
[13] Wang N 2011 Solid State Commun. 151 4
[14] Wang N 2010 J. Magn. Magn. Mater. 322 6
[15] Eerenstein W 2006 Nature 442 7
[16] Yan L 2009 J. Mater. Sci. 44 15
[17] Arima T 2004 Phys. Rev. B 70 8
[18] Kaneko K 2009 Appl. Phys. Express 2 3
[19] Amores J M G 2001 J. Mater. Chem. 11 7
[20] Machon D 2006 Phys. Rev. B 73 9
[21] Marezio M 1967 J. Chem. Phys. 46 4
[22] Lv Y F, Xiang J Y, Wen F S, Lv W M, Hu W T and Liu Z Y 2015 J. Magn. Magn. Mater. 377 460
[23] Rodríguez-Carvajal J 2001 IUCr Newsletter 26 8
[24] Yoshioka S 2007 J. Phys. Condens. Matter 19 12
[25] Kortüm G, Braun W and Herzog G 1963 Angewandte Chemie International Edition in English 2 333
[26] Noksha O N and Grum-Grzhimailo S V 1972 Studies of the Optical Spectra of Crystals with Iron Group Ions at Room and Low Temperatures (Moscow: Nauka)
[27] Krebs J J and Maisch W G 1971 Phys. Rev. B 4 757
[28] Kim K J and Park Y R 2004 J. Appl. Phys. 96 4150
[29] Tauc J, Grigorovici R and Vancu A 1966 Phys. Stat. Sol. (b) 15 627
[30] Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K and Fornari R 2011 New J. Phys. 13 085014
[31] Mohamed M, Janowitz C, Unger I, Manzke R, Galazka Z, Uecker R, Fornari R, Weber J, Varley J and van de Walle C 2010 Appl. Phys. Lett. 97 211903
[32] Tauc J 1968 Mater. Res. Bull. 3 37
[33] Gilbert B, Frandsen C, Maxey E R and Sherman D M 2009 Phys. Rev. B 79 035108
[34] Gaj J A, Planel R and Fishman G 1979 Solid State Commun. 29 435
[35] Zając M, Gosk J, Kamińska M, Twardowski A, Szyszko T and Podsiadlo S 2001 Appl. Phys. Lett. 79 2432
[36] Dupuis V 2001 Phys. Rev. B 64 7
[37] Galazka R R 1980 Phys. Rev. B 22 12
[38] Mulder C A M 1981 Phys. Rev. B 23 13
[39] Aeppli G, Shapiro S M, Birgeneau R J and Chen H S 1983 Phys. Rev. B 28 5160
[40] Li B, Zhang X, Tian J and Zhang J 2011 Chem. Commun. 47 1737
[41] Noguchi S, Okuda K, Abliz M, Goto K, Kindo K, Haga Y, Yamamoto E and Onuki Y 1998 Physica B 246 4
[42] Murayama S, Yokosawa K, Miyako Y and Wassermann E F 1986 Phys. Rev. Lett. 57 4
[43] Datta T, Thornberry D, Jones Jr E R and Ledbetter H M 1984 Solid State Commun. 52 515
[44] Cragg D M and Sherrington D 1982 Phys. Rev. Lett. 49 1190
[45] Yeshurun Y and Sompolinsky H 1985 Phys. Rev. B 31 3191
[46] Hiroi M, Rokkaku T, Matsuda K, Hisamatsu T, Shigeta I, Ito M, Sakon T, Koyama K, Watanabe K, Nakamura S, Nojima T, Nakano T, Chen L, Fujiwara T, Uwatoko Y, Manaka H and Terada N 2009 Phys. Rev. B 79 224423
[47] Besser P J 1967 Phys. Rev. 153 11
[48] Droubay T, Rosso K M, Heald S M, McCready D E, Wang C M and Chambers S A 2007 Phys. Rev. B 75 104412
[1] Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method
A. Abdel Moez, Ahmed I. Ali, and A. Tayel. Chin. Phys. B, 2022, 31(1): 018103.
[2] Excess-iron driven spin glass phase in Fe1+yTe1-xSex
Long Tian(田龙), Panpan Liu(刘盼盼), Tao Hong(洪涛), Tilo Seydel, Xingye Lu(鲁兴业), Huiqian Luo(罗会仟), Shiliang Li(李世亮), and Pengcheng Dai(戴鹏程). Chin. Phys. B, 2021, 30(8): 087402.
[3] Effects of short-range attraction on Jamming transition
Zhenhuan Xu(徐震寰), Rui Wang(王瑞), Jiamei Cui(崔佳梅), Yanjun Liu(刘彦君), and Wen Zheng(郑文). Chin. Phys. B, 2021, 30(6): 066101.
[4] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[5] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[6] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[7] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[8] Synthesis, structure, and properties of Ba9Co3Se15 with one-dimensional spin chains
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Li-Peng Cao(曹立朋), Wen-Min Li(李文敏), Run-Ze Yu(于润泽), Zheng Deng(邓正), Chang-Qing Jin(靳常青). Chin. Phys. B, 2020, 29(3): 036102.
[9] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[10] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[11] Intrinsic fluctuation and susceptibility in somatic cell reprogramming process
Jian Shen(沈健), Xiaomin Zhang(张小敏), Qiliang Li(李齐亮), Xinyu Wang(王歆宇), Yunjie Zhao(赵蕴杰), Ya Jia(贾亚). Chin. Phys. B, 2019, 28(4): 040503.
[12] Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method
Lin Chen(陈琳), Zhi-Wei Zheng(郑志伟), Li-Jun Bao(包立君), Jin-Sheng Fang(方金生), Tian-He Yang(杨天和), Shu-Hui Cai(蔡淑惠), Cong-Bo Cai(蔡聪波). Chin. Phys. B, 2018, 27(8): 088701.
[13] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
[14] Magnetic phase diagrams of Fe-Mn-Al alloy on the Bethe lattice
Erhan Albayrak. Chin. Phys. B, 2017, 26(2): 020502.
[15] Time gap for temporal cloak based on spectral hole burning in atomic medium
Abdul Jabar M S, Bakht Amin Bacha, Iftikhar Ahmad. Chin. Phys. B, 2016, 25(8): 084205.
No Suggested Reading articles found!