CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4) |
Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元) |
State Key Lab of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract Single phase of Fe3+-doped α-Ga2-xFexO3 (α -GFxO, x=0.1, 0.2, 0.3, 0.4) is synthesized by treating the β -Ga2-xFexO3 (β -GFxO) precursors at high temperatures and high pressures. Rietveld refinements of the X-ray diffraction data show that the lattice constants increase monotonically with the increase of Fe3+ content. Calorimetric measurements show that the temperature of the phase transition from α -GFxO to β -GFxO increases, while the associated enthalpy change decreases upon increasing Fe3+ content. The optical energy gap deduced from the reflectance measurement is found to decrease monotonically with the increase in Fe3+ content. From the measurements of magnetic field-dependent magnetization and temperature-dependent inverse molar susceptibility, we find that the superexchange interaction between Fe3+ ions is antiferromagnetic. Remnant magnetization is observed in the Fe3+-doped α -GFxO and is attributed to the spin glass in the magnetic sublattice. At high Fe3+ doping level (x=0.4), two evident peaks are observed in the image part of the AC susceptibility χ" ac. The frequency dependence in intensity of these two peaks as well as two spin freezing temperatures observed in the DC magnetization measurements of α -GF0.4O is suggested to be the behavior of two spin glasses.
|
Received: 23 August 2014
Revised: 13 October 2014
Accepted manuscript online:
|
PACS:
|
75.30.Hx
|
(Magnetic impurity interactions)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
75.30.Cr
|
(Saturation moments and magnetic susceptibilities)
|
|
75.60.Ej
|
(Magnetization curves, hysteresis, Barkhausen and related effects)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB731605), the National Science Fund for Distinguished Young Scholars of China (Grant No. 51025103), the National Natural Science Foundation of China (Grant Nos. 51172198 and 51102206), the Natural Science Foundation of Hebei Province, China (Grant No. E2014203144), the Science Foundation for the Excellent Youth Scholars from Universities and Colleges of Hebei Province, China (Grant No. YQ2014009), and the Research Program of the College Science & Technology of Hebei Province, China (Grant No. QN2014047). |
Corresponding Authors:
Xiang Jian-Yong
E-mail: jyxiang@ysu.edu.cn
|
Cite this article:
Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元) Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4) 2015 Chin. Phys. B 24 037502
|
[1] |
Roy R 1952 Journal of the American Chemical Society 74 4
|
[2] |
Machon D 2006 Phys. Rev. B 2006 9
|
[3] |
Yusa H 2008 Phys. Rev. B 77 9
|
[4] |
Kaneko K, Kakeya I, Komori S and Fujita S 2013 J. Appl. Phys. 113
|
[5] |
Hojo H, Fujita K, Tanaka K and Hirao K 2004 Ferromagnetism in Fe-doped β -Ga2O3 Prepared by a Solid State Reaction. MRS Proceedings (Cambridge: Cambridge University Press) p. I4.25
|
[6] |
Kim I G, Yeom T H, Lee S H, Yu Y M, Shin H W and Choh S H 2001 J. Appl. Phys. 89 4470
|
[7] |
Lee S W, Ryu Y G, Ahn G Y, Park S I and Kim C S 2004 Phys. Stat. Sol. 1 3550
|
[8] |
López I, Utrilla A D, Nogales E, Méndez B, Piqueras J, Peche A, Ramírez-Castellanos J and González-Calbet J M 2012 J. Phys. Chem. C 116 3935
|
[9] |
Lovejoy T C, Chen R, Yitamben E N, Shutthanadan V, Heald S M, Villora E G, Shimamura K, Zheng S, Dunham S T, Ohuchi F S and Olmstead M A 2012 J. Appl. Phys. 111 123716
|
[10] |
Song Y P, Wang P W, Xu X Y, Wang Z, Li G H and Yu D P 2006 Physica E 31 67
|
[11] |
Pickart S J, Nathans R and Alperin H A 1964 J. Phys. France 25 542
|
[12] |
Naresh N 2011 AIP Adv. 1 12
|
[13] |
Wang N 2011 Solid State Commun. 151 4
|
[14] |
Wang N 2010 J. Magn. Magn. Mater. 322 6
|
[15] |
Eerenstein W 2006 Nature 442 7
|
[16] |
Yan L 2009 J. Mater. Sci. 44 15
|
[17] |
Arima T 2004 Phys. Rev. B 70 8
|
[18] |
Kaneko K 2009 Appl. Phys. Express 2 3
|
[19] |
Amores J M G 2001 J. Mater. Chem. 11 7
|
[20] |
Machon D 2006 Phys. Rev. B 73 9
|
[21] |
Marezio M 1967 J. Chem. Phys. 46 4
|
[22] |
Lv Y F, Xiang J Y, Wen F S, Lv W M, Hu W T and Liu Z Y 2015 J. Magn. Magn. Mater. 377 460
|
[23] |
Rodríguez-Carvajal J 2001 IUCr Newsletter 26 8
|
[24] |
Yoshioka S 2007 J. Phys. Condens. Matter 19 12
|
[25] |
Kortüm G, Braun W and Herzog G 1963 Angewandte Chemie International Edition in English 2 333
|
[26] |
Noksha O N and Grum-Grzhimailo S V 1972 Studies of the Optical Spectra of Crystals with Iron Group Ions at Room and Low Temperatures (Moscow: Nauka)
|
[27] |
Krebs J J and Maisch W G 1971 Phys. Rev. B 4 757
|
[28] |
Kim K J and Park Y R 2004 J. Appl. Phys. 96 4150
|
[29] |
Tauc J, Grigorovici R and Vancu A 1966 Phys. Stat. Sol. (b) 15 627
|
[30] |
Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K and Fornari R 2011 New J. Phys. 13 085014
|
[31] |
Mohamed M, Janowitz C, Unger I, Manzke R, Galazka Z, Uecker R, Fornari R, Weber J, Varley J and van de Walle C 2010 Appl. Phys. Lett. 97 211903
|
[32] |
Tauc J 1968 Mater. Res. Bull. 3 37
|
[33] |
Gilbert B, Frandsen C, Maxey E R and Sherman D M 2009 Phys. Rev. B 79 035108
|
[34] |
Gaj J A, Planel R and Fishman G 1979 Solid State Commun. 29 435
|
[35] |
Zając M, Gosk J, Kamińska M, Twardowski A, Szyszko T and Podsiadlo S 2001 Appl. Phys. Lett. 79 2432
|
[36] |
Dupuis V 2001 Phys. Rev. B 64 7
|
[37] |
Galazka R R 1980 Phys. Rev. B 22 12
|
[38] |
Mulder C A M 1981 Phys. Rev. B 23 13
|
[39] |
Aeppli G, Shapiro S M, Birgeneau R J and Chen H S 1983 Phys. Rev. B 28 5160
|
[40] |
Li B, Zhang X, Tian J and Zhang J 2011 Chem. Commun. 47 1737
|
[41] |
Noguchi S, Okuda K, Abliz M, Goto K, Kindo K, Haga Y, Yamamoto E and Onuki Y 1998 Physica B 246 4
|
[42] |
Murayama S, Yokosawa K, Miyako Y and Wassermann E F 1986 Phys. Rev. Lett. 57 4
|
[43] |
Datta T, Thornberry D, Jones Jr E R and Ledbetter H M 1984 Solid State Commun. 52 515
|
[44] |
Cragg D M and Sherrington D 1982 Phys. Rev. Lett. 49 1190
|
[45] |
Yeshurun Y and Sompolinsky H 1985 Phys. Rev. B 31 3191
|
[46] |
Hiroi M, Rokkaku T, Matsuda K, Hisamatsu T, Shigeta I, Ito M, Sakon T, Koyama K, Watanabe K, Nakamura S, Nojima T, Nakano T, Chen L, Fujiwara T, Uwatoko Y, Manaka H and Terada N 2009 Phys. Rev. B 79 224423
|
[47] |
Besser P J 1967 Phys. Rev. 153 11
|
[48] |
Droubay T, Rosso K M, Heald S M, McCready D E, Wang C M and Chambers S A 2007 Phys. Rev. B 75 104412
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|