Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 039501    DOI: 10.1088/1674-1056/26/3/039501

Error analysis of the piston estimation method in dispersed fringe sensor

Yang Li(李杨)1,2,3, Sheng-Qian Wang(王胜千)1,2, Chang-Hui Rao(饶长辉)1,2
1 Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
2 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Dispersed fringe sensor (DFS) is an important phasing sensor of next-generation optical astronomical telescopes. The measurement errors induced by the measurement noise of three piston estimation methods for the DFS including least-squared fitting (LSF) method, frequency peak location (FPL) method and main peak position (MPP) method, are analyzed theoretically and validated experimentally in this paper. The experimental results coincide well with the theoretical analyses. The MPP, FPL, LSF are used respectively when the DFS operates with broadband light (central wavelength: 706 nm, bandwidth: 23 nm). The corresponding root mean square (RMS) value of estimated piston error can be achieved to be 1 nm, 3 nm, 26 nm, respectively. Additionally, the range of DFS with the FPL can be more than 100 μm at the same time. The FPL method can work well both in coarse and fine phasing stages with acceptable accuracy, compared with LSF method and MPP method.
Keywords:  adaptive and segmented optics      telescopes      interferometer      phase measurement  
Received:  10 November 2016      Revised:  06 December 2016      Accepted manuscript online: 
PACS:  95.75.Qr (Adaptive and segmented optics)  
  95.55.Cs (Ground-based ultraviolet, optical and infrared telescopes)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61008038).
Corresponding Authors:  Chang-Hui Rao     E-mail:

Cite this article: 

Yang Li(李杨), Sheng-Qian Wang(王胜千), Chang-Hui Rao(饶长辉) Error analysis of the piston estimation method in dispersed fringe sensor 2017 Chin. Phys. B 26 039501

[1] Shi F, Chanan G, Ohara C, Troy M and Redding D C 2004 Appl. Opt. 43 4474
[2] Liu Z, Wang S Q, Huang L H and Rao C H 2011 Proc. SPIE 8197 819716
[3] Luo Q, Huang L H, Gu N T, Li F and Rao C H 2012 Acta Phys. Sin. 61 069501 (in Chinese)
[4] Jiang Z Y, Li L and Huang Y F 2009 Chin. Phys. B 18 02774
[5] Shi F, Redding D and Bowersetal C 2000 Proc. SPIE 4013 757
[6] Acton D S, Knight J S, Contos A, Grimaldi S, Terry J, Lightsey P, Barto A, League B, Dean B, Smith J S, Bowers C, Aronstein D, Feinberg L, Hayden W, Comeau T, Soummer R, Elliott E, Perrin M and Starr C W 2012 Proc. SPIE 8442 84422H
[7] Kanneganti S, McLeod B A, Ordway M P, Roll J B, Shectman S A, Bouchez A H, Codona J, Eng R, Gauron T M, Handte F, Norton T J, Streechon P and Weaver D 2012 Proc. SPIE 8447 844752
[8] Spechler J A, Hoppe D J, Sigrist N, Shi F, Seo B J and Bikkannava S 2010 Proc. SPIE 7731 773155
[9] Van D M A, McLeod B A and Bouchez A H 2016 Appl. Opt. 55 539
[10] Gonga Q, Chub J, Tournois S, Eichhorna W and Kubalaka D 2011 Proc. SPIE 8150 81500M
[11] Zhao W R and Cao G R 2011 Opt. Express 19 8670
[12] Zhang Y, Liu G R, Wang Y F, Li Y P, Zhang Y J, Zhang L, Zeng Y Z and Zhang J 2011 Res. Astron. Astrophys. 11 1111
[13] McLeod B, Boucher A and Acton D S 2013 Proc. Third. AO4ELT. Conf.
[14] Hasinoff S W 2014 Photon, Poisson Noise (New York: Springer Press) p. 131
[15] Kyriazis G A, Ramos P M and Serra A C 2011 Proc. IMEKO TC4 Symp. Natal. Brazil. pp. 27-30
[16] Belega D, Petri D and Dallet D 2012 Proc. IEEE Trans. Instrum. Meas. 61 3234
[17] Cao G R and Yu X 1994 Opt. Eng. 33 2331
[18] Vliet L V, Rieger B and Verbeek P W 2002 Fourier Transform of a Gaussian
[19] Wang Z, Bovik A C, Sheikh H R and Simoncelli E P 2004 Proc. IEEE Trans. Image. Process. 13600
[1] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[2] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[3] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[4] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[5] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[6] Improving the spectral purity of single photons by a single-interferometer-coupled microring
Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(3): 034210.
[7] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[8] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[9] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[10] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[11] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[12] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[13] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[14] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[15] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
No Suggested Reading articles found!