Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038902    DOI: 10.1088/1674-1056/26/3/038902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Link prediction in complex networks via modularity-based belief propagation

Darong Lai(赖大荣)1,2, Xin Shu(舒欣)3, Christine Nardini4,5
1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China;
2 Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing 210096, China;
3 College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
4 CNR-IAC "Mauro Picone" Via dei Taurini 19, 00185 Roma, Italy;
5 Personalgenomics, Via delle Grazie, Verona, Italy
Abstract  Link prediction aims at detecting missing, spurious or evolving links in a network, based on the topological information and/or nodes' attributes of the network. Under the assumption that the likelihood of the existence of a link between two nodes can be captured by nodes' similarity, several methods have been proposed to compute similarity directly or indirectly, with information on node degree. However, correctly predicting links is also crucial in revealing the link formation mechanisms and thus in providing more accurate modeling for networks. We here propose a novel method to predict links by incorporating stochastic-block-model link generating mechanisms with node degree. The proposed method first recovers the underlying block structure of a network by modularity-based belief propagation, and based on the recovered block structural information it models the link likelihood between two nodes to match the degree sequence of the network. Experiments on a set of real-world networks and synthetic networks generated by stochastic block model show that our proposed method is effective in detecting missing, spurious or evolving links of networks that can be well modeled by a stochastic block model. This approach efficiently complements the toolbox for complex network analysis, offering a novel tool to model links in stochastic block model networks that are fundamental in the modeling of real world complex networks.
Keywords:  link prediction      complex network      belief propagation      modularity  
Received:  26 August 2016      Revised:  25 November 2016      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  02.50.Tt (Inference methods)  
  89.20.Ff (Computer science and technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grants No. 61202262), the Natural Science Foundation of Jiangsu Province, China (Grants No. BK2012328), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grants No. 20120092120034).
Corresponding Authors:  Darong Lai     E-mail:  darong.lai@gmail.com

Cite this article: 

Darong Lai(赖大荣), Xin Shu(舒欣), Christine Nardini Link prediction in complex networks via modularity-based belief propagation 2017 Chin. Phys. B 26 038902

[1] Newman M E J 2010 Networks: An Introduction, 1st edn. (Oxford: Oxford University Press) p. 1
[2] Ren T, Wang Y F, Liu M M and Xu Y J 2016 Chin. Phys. B 25 020101
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[4] Ruan Y R, Lao S Y, Xiao Y D, Wang J D and Bai L 2016 Chin. Phys. Lett. 33 028901
[5] Duan J M, Shang M S, Cai S M and Zhang Y X 2015 Acta Phys. Sin. 64 200501 (in Chinese)
[6] Xu X L, Liu C P and He D R 2016 Chin. Phys. Lett. 33 048901
[7] Yu H, Braun P, Yildirim M A et al. 2008 Science 322 104
[8] Stumpf M P H, Thorne T, de Silva E, Stewart R, An H J, Lappe M and Wiuf C 2008 Proc. Natl. Acad. Sci. USA 105 6959
[9] Amaral L A N 2008 Proc. Natl. Acad. Sci. USA 105 6795
[10] Butts C 2003 Soc. Netw. 25 103
[11] Kossinets G 2006 Soc. Netw. 28 247
[12] Schifanella R, Barrat A, Cattuto C, Markines B and Menczer F 2010 Proceedings of the Third ACM International Conference on Web Search and Data Mining, February 3-6, 2010, New York, USA, p. 271
[13] Fouss F, Pirotte A, Renders J M and Saerens M 2007 IEEE T. Knowl. Data En. 19 355
[14] Lü L and Zhou T 2011 Physica A 390 1150
[15] Newman M E J 2001 Phys. Rev. E 64 025102
[16] Adamic L A and Adar E 2003 Soc. Netw. 25 211
[17] Zhou T, Lü L and Zhang Y C 2009 Eur. Phys. J. B 71 623
[18] Clauset A, Moore C and Newman M E J 2008 Nature 453 98
[19] Guimera R and Sales-Pardo M 2009 Proc. Natl. Acad. Sci. USA 106 22073
[20] Pan L, Zhou T, Lü L and Hu C K 2016 Sci. Rep. 6 22955
[21] Taskar B, Wong M F, Abbeel P and Koller D 2004 Proceedings of Neural Information Processing Systems, December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada, p. 659
[22] Yu K, Chu W, Yu S, Tresp V and Xu Z 2007 Proceedings of Neural Information Processing Systems, December 4-7, 2006, Vancouver, British Columbia, Canada, p. 1657
[23] Li Y J, Yin C, Yu H and Liu Z 2016 Acta Phys. Sin. 65 200501 (in Chinese)
[24] Katz L 1953 Psychmetrika 18 39
[25] Salton G and McGill M J 1983 Introduction to Modern Information Retrieval (Auckland: McGraw-Hill) p. 1
[26] Xie Y B, Zhou T and Wang B H 2008 Physica A 387 1683
[27] Lü L, Jin C and Zhou T 2009 Phys. Rev. E 83 046122
[28] Wang W Q, Zhang Q M and Zhou T 2012 Europhys. Lett. 98 28004
[29] Zhang Q M, Xu X K, Zhu Y X and Zhou T 2015 Sci. Rep. 5 10350
[30] Zhang Q M, Lü L, Wang W Q and Zhou T 2013 PloS One 8 e55437
[31] Lü L, Pan L, Zhou T and Zhang Y C 2015 Proc. Natl. Acad. Sci. USA 112 2345
[32] Girvan M and Newman M E J 2002 Proc. Natl Acad. Sci. USA 99 7821
[33] Shen Y, Ren G, Liu Y and Xu J L 2016 Chin. Phys. B 25 068901
[34] Nowicki K and Snijders T A B 2001 J. Am. Stat. Assoc. 96 1077
[35] Karrer B and Newman M E J 2011 Phys. Rev. E 83 016107
[36] Zhang P and Moore C 2014 Proc. Natl. Acad. Sci. USA 111 18144
[37] Hanely J A and McNeil B J 1982 Radiology 143 29
[38] Karrer B and Newman M E J 2011 Phys. Rev. E 83 016107
[39] Lai D, Shu X and Nardini C 2016 J. Stat. Mech. P053301
[40] Zachary W W 1977 J. Anthropol. Res. 33 452
[41] Adamic L A and Glance N 2005 Proceedings of the 3rd International Workshop on Link Discovery, August 21-24, 2005, Chicago, USA, p. 36
[42] Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E and Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396
[43] Ulanowicz R E, Bondavalli C and Egnotovich M S 1998 Technical Report Ref. No. [UMCES] CBL 98-123
[44] Sun S, Ling L, Zhang N, Li G and Chen R 2003 Nucleic Acids Res. 31 2443
[45] Danon L, Diaz-Guilera A, Duch J and Arenas A 2005 J. Stat. Mech. P09008
[46] Fortunato S 2010 Phys. Rep. 486 75
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
[10] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[11] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[12] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[13] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[14] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[15] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
No Suggested Reading articles found!