CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
New ternary superconducting compound LaRu2As2: Physical properties from density functional theory calculations |
M A Hadi1, M S Ali2, S H Naqib1, A K M A Islam1,3 |
1 Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh; 2 Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh; 3 International Islamic University Chittagong, Chittagong 4203, Bangladesh |
|
|
Abstract In this paper, we perform the density functional theory (DFT)-based calculations by the first-principles pseudopotential method to investigate the physical properties of the newly discovered superconductor LaRu2As2 for the first time. The optimized structural parameters are in good agreement with the experimental results. The calculated independent elastic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh's ratio as well as Poisson's ratio indicate that LaRu2As2 should behave as a ductile material. Due to low Debye temperature, LaRu2As2 may be used as a thermal barrier coating (TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu2As2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent and metallic interactions is expected to be in accordance with charge density calculation.
|
Received: 03 November 2016
Revised: 13 December 2016
Accepted manuscript online:
|
PACS:
|
71.20.Be
|
(Transition metals and alloys)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Corresponding Authors:
M A Hadi
E-mail: hadipab@gmail.com
|
Cite this article:
M A Hadi, M S Ali, S H Naqib, A K M A Islam New ternary superconducting compound LaRu2As2: Physical properties from density functional theory calculations 2017 Chin. Phys. B 26 037103
|
[1] |
Villars P and Calvert L D 1991 Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed, ASM International, Materials Park, OH
|
[2] |
Shameem Banu I B, Rajagopalan M, Mohammed Yousuf and Shenbagaraman P 1999 J. Alloys Comp. 288 88
|
[3] |
Baran S, Balanda M, Gondek L, Hoser A, Nenkov K, Penc B and Szytula A 2010 J. Alloys Comp. 507 16
|
[4] |
Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
|
[5] |
Sasmal K, Lorenz B L B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007
|
[6] |
Jeitschko W, Glaum R and Boonk L 1987 J. Solid State Chem. 69 93
|
[7] |
Meisner G P 1981 Physica B+C 108 763
|
[8] |
Shirotani I, Uchiumi T, Ohno K, et al. 1997 Phys. Rev. B 56 7866
|
[9] |
Barz H, Ku H C, Meisner G P, et al. 1980 Proc. Natl. Acad. Sci. USA 77 3132
|
[10] |
Meisner G P, Ku H C and Barz H 1983 Mater. Res. Bull. 18 983
|
[11] |
Guo Q, Pan B J, Yu J, Ruan B B, Chen D Y, Wang X C, Mu Q G, Chen G F and Ren H A 2016 Sci. Bull. 61 921
|
[12] |
Segall M, Probert M, Pickard C, Hasnip P, Clark S, Refson K, Yates J R and Payne M 2005 Z. Kristallogr. 220 567
|
[13] |
Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
|
[14] |
Marzari N, Vanderbilt D and Payne M C 1997 Phys. Rev. Lett. 79 1337
|
[15] |
Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[16] |
Bloch F 1928 Z. Phys. 52 555
|
[17] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[18] |
Fischer T H and Almlof J 1993 J. Phys. Chem. 96 9768
|
[19] |
Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[20] |
Alfe D 1999 Comp. Phys. Commun. 118 31
|
[21] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[22] |
Shein I R and Ivanovskii A L 2009 Solid State Commun. 149 1860
|
[23] |
Nath R, Singh Y and Johnston D C 2009 Phys. Rev. B 79 174513
|
[24] |
Murnaghan F D 1951 Finite Deformation of an Elastic Solid (New York: Wiley)
|
[25] |
Voigt W 1928 Lehrbuch der Kristallphysik, Taubner Leipzig
|
[26] |
Reuss A 1929 Z. Angew, Math. Mech. 9 49
|
[27] |
Hill R 1952 Proc. Phys. Soc. A 65 349
|
[28] |
Shein I R and Ivanovskii A L 2012 Intermetallics 26 1
|
[29] |
Born M, Huang K and Lax M 1995 Am. J. Phys. 23 474
|
[30] |
Koc H, Ozisik H, Deligöz E, Mamedov A M and Ozbay E 2014 J. Mol. Model. 20 2180
|
[31] |
Pettifor D G 1992 Mater. Sci. Technol. 8 345
|
[32] |
Pugh S F 1954 Phil. Mag. 45 823
|
[33] |
Frantsevich I N, Voronov F F and Bokuta S A 1983 Naukova Dumka, Kiev 60-180
|
[34] |
Shein I R and Ivanovskii A L 2013 Physica B 410 42
|
[35] |
Shein I R and Ivanovskii A L 2011 Phys. Status Solidi B 248 228
|
[36] |
Shein I R and Ivanovskii A L 2010 JETP Lett. 91 410
|
[37] |
Romero M and Escamilla R 2014 Comp. Mater. Sci. 81 184
|
[38] |
Ravindran P, Fast L, Korzhavyi P A, Johansson, B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4892
|
[39] |
Vaitheeswaran G, Kanchana V, Svane A and Delin A 2007 J. Phys.: Conden. Matter 19 326214
|
[40] |
Aydin S and Özcan A 2010 Turk. J. Phys. 34 1
|
[41] |
Dong B, Liu K, Zhou X L, Tan J, Mao X C and Chang J 2016 Phys. Status Solidi B 253 527
|
[42] |
Li C, Wang C, Zhang F, Ma D, Wang B and Wu G 2008 J. Phys. Chem. Solids 78 28
|
[43] |
Wu Z and Zhao E 2008 J. Phys. Chem. Solids 69 2723
|
[44] |
Benayad N, Rached D, Khenata R, Litimein F, Reshak A H, Rabah M and Baltache H 2011 Mod. Phys. Lett. B 25 747
|
[45] |
Varshney D and Shriya S 2013 Phys. Chem. Minerals 40 521
|
[46] |
Westbrook J H and Conrad H 1973 Conference Proceedings, The Science of Hardness Testing and Its Research Applications (Metals Park, Ohio: ASM)
|
[47] |
Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
|
[48] |
Wang X, Xiang H, Sum X, Liu J, Hou F and Zhou Y 2015 J. Mater. Sci. Tech. 31 369
|
[49] |
Zhou Y, Xiang H, Lu X, Feng Z and Li Z 2015 J. Adv. Ceram. 4 83
|
[50] |
Anderson O L 1963 J. Phys. Chem. Solids 24 909
|
[51] |
Nagel S and Tauc J 1975 Phys. Rev. Lett. 35 380
|
[52] |
Hadi M A, Alam M A, Roknuzzaman M, Nasir M T, Islam A K M A and Naqib S H 2015 Chin. Phys. B 24 117401
|
[53] |
Alam M A, Hadi M A, Nasir M T, Roknuzzaman M, Parvin F, Zilani M A K, Islam A K M A and Naqib S H 2016 J. Supercond. Nov. Magn. 29 2503
|
[54] |
Hirai D, Kawakami R, Magdysyuk O, Dinnebier R E, Yaresko A and Takagi H 2014 J. Phys. Soc. Jpn. 83 103703
|
[55] |
Sanchez-Portal D, Artacho E and Soler J M 1995 Solid State Commun. 95 685
|
[56] |
Mulliken R S 1955 J. Chem. Phys. 23 1833
|
[57] |
Ching W Y and Rulis P 2012 Electronic Structure Methods for Complex Materials-The Orthogonalized Linear Combination of Atomic Orbitals (Oxford Univ. Press)
|
[58] |
Gao F M 2006 Phys. Rev. B 73 132104
|
[59] |
Westbrook J H and Conrad H 1973 The Science of Hardness Testing and Its Research Applications (ASM, Ohio)
|
[60] |
Gou H, Hou L, Zhang J and Gao F 2008 Appl. Phys. Lett. 92 241901
|
[61] |
Szymański A and Szymański J M 1989 Hardness Estimation of Minerals Rocks and Ceramic Materials, 6th edn (Amsterdam: Elsevier)
|
[62] |
Glazov V M and Vigdorovid V N 1989 Hardness of Metals (Izd. Metellurgiya, Moskva)
|
[63] |
IUPAC 1997 Compendium of Chemical Technology, 2nd edn., 2006 Online corrected version
|
[64] |
Yildirim T 2009 Phys. Rev. Lett. 102 037003
|
[65] |
Giannozzi P et al. 2009 J. Phys. Condens. Matter 21 395502
|
[66] |
Lofland S E, Hettinger J D, Meehan T, Bryan A, Finkel P, Gupta S, Barsoum M W and Hug G 2006 Phys. Rev. B 74 174501
|
[67] |
Savrasov S Y and Savrasov D Y 1996 Phys. Rev. B 54 16487
|
[68] |
Rahaman M Z and Rahman M A 2016 arXiv:1609.08856
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|