Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037103    DOI: 10.1088/1674-1056/26/3/037103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

New ternary superconducting compound LaRu2As2: Physical properties from density functional theory calculations

M A Hadi1, M S Ali2, S H Naqib1, A K M A Islam1,3
1 Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh;
2 Department of Physics, Pabna University of Science and Technology, Pabna 6600, Bangladesh;
3 International Islamic University Chittagong, Chittagong 4203, Bangladesh
Abstract  In this paper, we perform the density functional theory (DFT)-based calculations by the first-principles pseudopotential method to investigate the physical properties of the newly discovered superconductor LaRu2As2 for the first time. The optimized structural parameters are in good agreement with the experimental results. The calculated independent elastic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh's ratio as well as Poisson's ratio indicate that LaRu2As2 should behave as a ductile material. Due to low Debye temperature, LaRu2As2 may be used as a thermal barrier coating (TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu2As2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent and metallic interactions is expected to be in accordance with charge density calculation.
Keywords:  new superconductor LaRu2As2      density functional theory (DFT) calculations      mechanical properties      electronic features  
Received:  03 November 2016      Revised:  13 December 2016      Accepted manuscript online: 
PACS:  71.20.Be (Transition metals and alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.-x (Mechanical properties of solids)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Corresponding Authors:  M A Hadi     E-mail:  hadipab@gmail.com

Cite this article: 

M A Hadi, M S Ali, S H Naqib, A K M A Islam New ternary superconducting compound LaRu2As2: Physical properties from density functional theory calculations 2017 Chin. Phys. B 26 037103

[1] Villars P and Calvert L D 1991 Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed, ASM International, Materials Park, OH
[2] Shameem Banu I B, Rajagopalan M, Mohammed Yousuf and Shenbagaraman P 1999 J. Alloys Comp. 288 88
[3] Baran S, Balanda M, Gondek L, Hoser A, Nenkov K, Penc B and Szytula A 2010 J. Alloys Comp. 507 16
[4] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[5] Sasmal K, Lorenz B L B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007
[6] Jeitschko W, Glaum R and Boonk L 1987 J. Solid State Chem. 69 93
[7] Meisner G P 1981 Physica B+C 108 763
[8] Shirotani I, Uchiumi T, Ohno K, et al. 1997 Phys. Rev. B 56 7866
[9] Barz H, Ku H C, Meisner G P, et al. 1980 Proc. Natl. Acad. Sci. USA 77 3132
[10] Meisner G P, Ku H C and Barz H 1983 Mater. Res. Bull. 18 983
[11] Guo Q, Pan B J, Yu J, Ruan B B, Chen D Y, Wang X C, Mu Q G, Chen G F and Ren H A 2016 Sci. Bull. 61 921
[12] Segall M, Probert M, Pickard C, Hasnip P, Clark S, Refson K, Yates J R and Payne M 2005 Z. Kristallogr. 220 567
[13] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[14] Marzari N, Vanderbilt D and Payne M C 1997 Phys. Rev. Lett. 79 1337
[15] Perdew J P, Burke S and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Bloch F 1928 Z. Phys. 52 555
[17] Vanderbilt D 1990 Phys. Rev. B 41 7892
[18] Fischer T H and Almlof J 1993 J. Phys. Chem. 96 9768
[19] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[20] Alfe D 1999 Comp. Phys. Commun. 118 31
[21] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[22] Shein I R and Ivanovskii A L 2009 Solid State Commun. 149 1860
[23] Nath R, Singh Y and Johnston D C 2009 Phys. Rev. B 79 174513
[24] Murnaghan F D 1951 Finite Deformation of an Elastic Solid (New York: Wiley)
[25] Voigt W 1928 Lehrbuch der Kristallphysik, Taubner Leipzig
[26] Reuss A 1929 Z. Angew, Math. Mech. 9 49
[27] Hill R 1952 Proc. Phys. Soc. A 65 349
[28] Shein I R and Ivanovskii A L 2012 Intermetallics 26 1
[29] Born M, Huang K and Lax M 1995 Am. J. Phys. 23 474
[30] Koc H, Ozisik H, Deligöz E, Mamedov A M and Ozbay E 2014 J. Mol. Model. 20 2180
[31] Pettifor D G 1992 Mater. Sci. Technol. 8 345
[32] Pugh S F 1954 Phil. Mag. 45 823
[33] Frantsevich I N, Voronov F F and Bokuta S A 1983 Naukova Dumka, Kiev 60-180
[34] Shein I R and Ivanovskii A L 2013 Physica B 410 42
[35] Shein I R and Ivanovskii A L 2011 Phys. Status Solidi B 248 228
[36] Shein I R and Ivanovskii A L 2010 JETP Lett. 91 410
[37] Romero M and Escamilla R 2014 Comp. Mater. Sci. 81 184
[38] Ravindran P, Fast L, Korzhavyi P A, Johansson, B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4892
[39] Vaitheeswaran G, Kanchana V, Svane A and Delin A 2007 J. Phys.: Conden. Matter 19 326214
[40] Aydin S and Özcan A 2010 Turk. J. Phys. 34 1
[41] Dong B, Liu K, Zhou X L, Tan J, Mao X C and Chang J 2016 Phys. Status Solidi B 253 527
[42] Li C, Wang C, Zhang F, Ma D, Wang B and Wu G 2008 J. Phys. Chem. Solids 78 28
[43] Wu Z and Zhao E 2008 J. Phys. Chem. Solids 69 2723
[44] Benayad N, Rached D, Khenata R, Litimein F, Reshak A H, Rabah M and Baltache H 2011 Mod. Phys. Lett. B 25 747
[45] Varshney D and Shriya S 2013 Phys. Chem. Minerals 40 521
[46] Westbrook J H and Conrad H 1973 Conference Proceedings, The Science of Hardness Testing and Its Research Applications (Metals Park, Ohio: ASM)
[47] Chung H Y, Weinberger M B, Yang J M, Tolbert S H and Kaner R B 2008 Appl. Phys. Lett. 92 261904
[48] Wang X, Xiang H, Sum X, Liu J, Hou F and Zhou Y 2015 J. Mater. Sci. Tech. 31 369
[49] Zhou Y, Xiang H, Lu X, Feng Z and Li Z 2015 J. Adv. Ceram. 4 83
[50] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[51] Nagel S and Tauc J 1975 Phys. Rev. Lett. 35 380
[52] Hadi M A, Alam M A, Roknuzzaman M, Nasir M T, Islam A K M A and Naqib S H 2015 Chin. Phys. B 24 117401
[53] Alam M A, Hadi M A, Nasir M T, Roknuzzaman M, Parvin F, Zilani M A K, Islam A K M A and Naqib S H 2016 J. Supercond. Nov. Magn. 29 2503
[54] Hirai D, Kawakami R, Magdysyuk O, Dinnebier R E, Yaresko A and Takagi H 2014 J. Phys. Soc. Jpn. 83 103703
[55] Sanchez-Portal D, Artacho E and Soler J M 1995 Solid State Commun. 95 685
[56] Mulliken R S 1955 J. Chem. Phys. 23 1833
[57] Ching W Y and Rulis P 2012 Electronic Structure Methods for Complex Materials-The Orthogonalized Linear Combination of Atomic Orbitals (Oxford Univ. Press)
[58] Gao F M 2006 Phys. Rev. B 73 132104
[59] Westbrook J H and Conrad H 1973 The Science of Hardness Testing and Its Research Applications (ASM, Ohio)
[60] Gou H, Hou L, Zhang J and Gao F 2008 Appl. Phys. Lett. 92 241901
[61] Szymański A and Szymański J M 1989 Hardness Estimation of Minerals Rocks and Ceramic Materials, 6th edn (Amsterdam: Elsevier)
[62] Glazov V M and Vigdorovid V N 1989 Hardness of Metals (Izd. Metellurgiya, Moskva)
[63] IUPAC 1997 Compendium of Chemical Technology, 2nd edn., 2006 Online corrected version
[64] Yildirim T 2009 Phys. Rev. Lett. 102 037003
[65] Giannozzi P et al. 2009 J. Phys. Condens. Matter 21 395502
[66] Lofland S E, Hettinger J D, Meehan T, Bryan A, Finkel P, Gupta S, Barsoum M W and Hug G 2006 Phys. Rev. B 74 174501
[67] Savrasov S Y and Savrasov D Y 1996 Phys. Rev. B 54 16487
[68] Rahaman M Z and Rahman M A 2016 arXiv:1609.08856
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[6] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[7] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[8] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[9] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[10] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[11] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[12] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[13] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[14] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
[15] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
No Suggested Reading articles found!