CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Lattice vibration and thermodynamical properties of a single-layergraphene in the presence of vacancy defects |
Sha Li(黎莎)1, Zeng-Tao Lv(吕增涛)1,2 |
1 School of Physics, Beijing Institute of Technology, Beijing 100081, China; 2 School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252059, China |
|
|
Abstract The phonon density of states (PDOS) and the thermodynamical properties including the heat capacity, the free energy, and the entropy of a single-layer graphene with vacancy defects have been studied theoretically. We first analytically derive the general formula of the lattice vibration frequency, and then numerically discuss the effect of the defects on the PDOS. Our results suggest that the vacancy defects will induce the sawtooth-like oscillation of the PDOS and the specific oscillation patterns depend on the concentration and the spatial distribution of the vacancies. In addition, it is verified that the vacancy defects will cause the increase of the heat capacity because of the vacancy-induced low-frequency resonant peak. Moreover, the influences of the vacancies on the free energy and the entropy are investigated.
|
Received: 13 September 2016
Revised: 11 December 2016
Accepted manuscript online:
|
PACS:
|
63.22.Rc
|
(Phonons in graphene)
|
|
65.80.Ck
|
(Thermal properties of graphene)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404155 and 11274040). |
Corresponding Authors:
Zeng-Tao Lv
E-mail: lvzengtao@lcu.edu.cn
|
Cite this article:
Sha Li(黎莎), Zeng-Tao Lv(吕增涛) Lattice vibration and thermodynamical properties of a single-layergraphene in the presence of vacancy defects 2017 Chin. Phys. B 26 036303
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[3] |
Zhang Y B, Tan Y, Stormer H L and Kim P 2005 Nature 438 201
|
[4] |
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282
|
[5] |
Pereira V M, Guinea F, Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2006 Phys. Rev. Lett. 96 036801
|
[6] |
Calizo I, Miao F, Bao W, Lau C N and Balandin A A 2007 Appl. Phys. Lett. 91 071913
|
[7] |
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[8] |
Wang Z, Xie R, Bui C T, Liu D, Ni X, Li B and Thong J T L 2011 Nano Lett. 11 113
|
[9] |
Pop E, Varshney V and Roy A K 2012 MRS Bull. 37 1273
|
[10] |
Jang W, Bao W, Jing L, Lau C N and Dames C 2013 Appl. Phys. Lett. 103 113102
|
[11] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
|
[12] |
Mak K F, Shan J and Heinz T F 2011 Phys. Rev. Lett. 106 046401
|
[13] |
Yan J, Ruan W Y and Chou M Y 2008 Phys. Rev. B 77 125401
|
[14] |
Saha S K, Waghmare U V, Krishnamurthy H R and Sood A K 2008 Phys. Rev. B 78 165421
|
[15] |
Ma F, Zheng H B, Sun Y J, Yang D, Xu K W and Chu P K 2012 Appl. Phys. Lett. 101 111904
|
[16] |
Cocemasov A I, Nika D L and Balandin A A 2013 Phys. Rev. B 88 035428
|
[17] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim K S, Ahn J, Kim P, Choin J and Hong B H 2009 Nature 457 706
|
[18] |
Bae S, Kim H, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y, Kim Y, Kim K S, Özyilmaz B, Ahn J, Hong B H and Lijima S 2010 Nat. Nanotechnol. 5 574
|
[19] |
Sutter P W, Flege J and Sutter E A 2008 Nat. Mater. 7 406
|
[20] |
Pan B Y, Zhang H, Shi D, Sun J, Du S, Liu F and Gao H 2009 Adv. Mater. 21 2777
|
[21] |
Stankovich S, Dikin D A, Domentt G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282
|
[22] |
Wang H, Robinson J T, Li X and Dai H 2009 J. Am. Chem. Soc. 131 9910
|
[23] |
Jiang J W, Wang J S and Li B 2009 Phys. Rev. B 79 205418
|
[24] |
Savic I, Mingo N and Stewart D A 2008 Phys. Rev. Lett. 101 165502
|
[25] |
Jiang J W, Lan J, Wang J S and Li B 2010 J. Appl. Phys. 107 054314
|
[26] |
Mingo N, Esfarjani K, Broido D A and Stewart D A 2010 Phys. Rev. B 81 045408
|
[27] |
Zhang H, Lee G and Cho K 2011 Phys. Rev. B 84 115460
|
[28] |
Hao F, Fang D and Xu Z 2011 Appl. Phys. Lett. 99 041901
|
[29] |
Jiang J W, Wang B S and Wang J S 2011 Appl. Phys. Lett. 98 113114
|
[30] |
Adamyan V and Zavalniuk V 2011 J. Phys.:Condens. Matter 23 015402
|
[31] |
Sgouros A, Sigalas M M, Kalosakas G, Papagelis K and Papanicolaou N I 2012 J. Appl. Phys. 112 094307
|
[32] |
Gass M H, Bangert U, Bleloch A L, Wang P, Nair R R and Geim A K 2008 Nat. Nanotechnol. 3 676
|
[33] |
Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F and Zettl A 2008 Nano Lett. 8 3582
|
[34] |
Ugeda M M, Brihuega I, Guinea F and Gómez-Rodríguez G M 2010 Phys. Rev. Lett. 104 096804
|
[35] |
Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
|
[36] |
Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (Singapore:Imperial College Press) p. 169
|
[37] |
Dubay O and Kresse G 2003 Phys. Rev. B 67 035401
|
[38] |
Maultzsch J, Reich S, Thomsen C, Requardt H and Ordejón 2004 Phys.Rev. Lett. 92 075501
|
[39] |
Wirtz L and Rubio A 2004 Solid State Commun. 131 141
|
[40] |
Oshima C, Aizawa T, Souda R, Lshizawa Y and Sumiyoshi Y 1988 Solid State Commun. 65 1601
|
[41] |
Mohr M, Maultzsch J, Dobardižić E, Reich S, Milošević I, Dammn-janović M, Bosak A, Krisch M and Thomsen C 2007 Phys. Rev. B 76 035439
|
[42] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[43] |
Amara H, Latil S, Meunier V, Lambin P and Charlier J C 2007 Phys. Rev. B 76 115423
|
[44] |
Roy R S 1968 J. Phys. B 1 445
|
[45] |
Jain K P and Prabhakaran A K 1962 Phys. Rev. Lett. 9 54
|
[46] |
Brout R and Visscher W M 1972 Phys. Rev. B 6 596
|
[47] |
Liang W, Xiao Y and Ding J W 2008 Acta Phys. Sin. 57 3714
|
[48] |
Sharmila S N and Waghmare U V 2012 Phys. Rev. B 86 165401
|
[49] |
Nihira T and Iwata T 2003 Phys. Rev. B 68 134305
|
[50] |
Lu D, Jiang P and Xu Z Z 2010 Solid State Physics (Shanghai:Shanghai Scientific and Technical Publishers) p. 76
|
[51] |
Aizawa T, Souda R, Ishizawa Y, Hirano H, Yamada T, Tanaka K and Oshima C 1990 Surf. Sci. 237 194
|
[52] |
Shikin A M, Farias D and Rieder K H 1998 Europhys. Lett. 44 44
|
[53] |
Ong Z Y and Pop E 2011 Phys. Rev. B 84 075471
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|