Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 030201    DOI: 10.1088/1674-1056/26/3/030201
GENERAL   Next  

Brownian ratchet mechanism of translocation in T7 RNA polymerase facilitated by a post-translocation energy bias arising from the conformational change of the enzyme

Zhan-Feng Wang(王展峰), Zhi-Qiang Zhang(张志强), Yi-Ben Fu(付一本), Peng-Ye Wang(王鹏业), Ping Xie(谢平)
Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

T7 RNA polymerase can transcribe DNA to RNA by translocating along the DNA. Structural studies suggest that the pivoting rotation of the O helix in the fingers domain may drive the movement of the O helix C-terminal Tyr639 from pre- to post-translocation positions. In a series of all-atom molecular dynamics simulations, we show that the movement of Tyr639 is not tightly coupled to the rotation of the O helix, and that the two processes are only weakly dependent on each other. We also show that the internal potential of the enzyme itself generates a small difference in free energy (ΔE) between the post- and pre-translocation positions of Tyr639. The calculated value of ΔE is consistent with that obtained from single-molecule experimental data. These findings lend support to a model in which the translocation takes place via a Brownian ratchet mechanism, with the small free energy bias ΔE arising from the conformational change of the enzyme itself.

Keywords:  RNA polymerase      molecular dynamics simulation      molecular motor      Brownian ratchet  
Received:  24 October 2016      Revised:  21 November 2016      Accepted manuscript online: 
PACS:  02.70.Ns (Molecular dynamics and particle methods)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Jc (Brownian motion)  
  87.15.kj (Protein-polynucleotide interactions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374352 and 11274374) and the National Key Research and Development Program of China (Grant No. 2016YFA0301500).

Corresponding Authors:  Ping Xie     E-mail:  pxie@aphy.iphy.ac.cn

Cite this article: 

Zhan-Feng Wang(王展峰), Zhi-Qiang Zhang(张志强), Yi-Ben Fu(付一本), Peng-Ye Wang(王鹏业), Ping Xie(谢平) Brownian ratchet mechanism of translocation in T7 RNA polymerase facilitated by a post-translocation energy bias arising from the conformational change of the enzyme 2017 Chin. Phys. B 26 030201

[1] Steitz T A 2006 Embo J. 25 3458
[2] Landick R 1997 Cell 88 741
[3] Uptain S M, Kane C M and M J Chamberlin 1997 Annu. Rev. Biochem. 66 117
[4] von Hippel P H 1998 Science 281 660
[5] Steitz T A 1999 J. Biol. Chem. 274 17395
[6] Steitz T A 2009 Curr. Opin. Struc. Biol. 19 683
[7] Steitz T A, Wang J, Eom S H, Jaeger J, Restle T and Jeruzalmi D 1996 Faseb J. 10 795
[8] Yin Y W and Steitz T A 2004 Cell 116 393
[9] Kennedy W P, Momand J R and Yin Y W 2007 J. Mol. Biol. 370 256
[10] Tahirov T H, Temiakov D, Anikin M, Patlan V, McAllister W T, Vassylyev D G and Yokoyama S 2002 Nature 420 43
[11] Bar-Nahum G, Epshtein V, Ruckenstein A E, Rafikov R, Mustaev A and Nudler E 2005 Cell 120 183
[12] Guajardo R and Sousa R 1997 J. Mol. Biol. 265 8
[13] Guo Q and Sousa R 2006 J. Mol. Biol. 358 241
[14] Vassylyev D G and Artsimovitch I 2005 Cell 123 977
[15] Abbondanzieri E A, Greenleaf W J, Shaevitz J W, Landick R and Block S M 2005 Nature 438 460
[16] Bai L, Santangelo T J and Wang M D 2006 Annu. Rev. Bioph. Biom. 35 343
[17] Thomen P, Lopez P J and Heslot F 2005 Phys. Rev. Lett. 94 128102
[18] Thomen P, Lopez P J, Bockelmann U, Guillerez J, Dreyfus M and Heslot F 2008 Biophys. J. 95 2423
[19] Yu J and Oster G 2012 Biophys. J. 102 532
[20] Feig M and Burton Z F 2010 Biophys. J. 99 2577
[21] Huang X H, Wang D, Weiss D R, Bushnell D A, Kornberg R D and Levitt M 2010 Proc. Natl. Acad. Sci. USA 107 15745
[22] Kireeva M L, Opron K, Seibold S A, Domecq C, Cukier R I, Coulombe B, Kashlev M and Burton Z F 2012 Bmc Biophys. 5 11
[23] Silva D A, Weiss D R, Avila F P, Da L T, Levitt M, Wang D and Huang X H 2014 Proc. Natl. Acad. Sci. USA 111 7665
[24] Woo H J, Liu Y and Sousa R 2008 Proteins 73 1021
[25] Golosov A A, Warren J J, Beese L S and Karplus M 2010 Structure 18 83
[26] Radhakrishnan R and Schlick T 2004 Proc. Natl. Acad. Sci. USA 101 5970
[27] Yang L J, Beard W A, Wilson S H, Broyde S and Schlick T 2002 J. Mol. Biol. 317 651
[28] Xie P 2008 Biosystems 93 199
[29] Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C and Ferrin T E 2004 J. Comput. Chem. 25 1605
[30] Meng E C, Pettersen E F, Couch G S, Huang C C and Ferrin T E 2006 Bmc Bioinformatics 7 339
[31] Xie P 2012 Proteins 80 2020
[32] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[33] Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W and Kollman P A 1995 J. Am. Chem. Soc. 117 5179
[34] Duan Z W, Xie P, Li W and Wang P Y 2012 Plos One 7 e36071
[35] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463
[36] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[37] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[38] Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A and Haak J R 1984 J. Chem. Phys. 81 3684
[39] Patey G N and Valleau J P 1973 Chem. Phys. Lett. 21 297
[40] Torrie G M and Valleau J P 1974 Chem. Phys. Lett. 28 578
[41] Torrie G M and Valleau J P 1977 J. Comput. Phys. 23 187
[42] Kumar S, Bouzida D, Swendsen R H, Kollman P A and Rosenberg J M 1992 J. Comput. Chem. 13 1011
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!