Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 028802    DOI: 10.1088/1674-1056/26/2/028802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance improvement of continuous carbon nanotube fibers by acid treatment

Qiang Zhang(张强)1,3, Kewei Li(李克伟)1, Qingxia Fan(范庆霞)1,3, Xiaogang Xia(夏晓刚)1,3, Nan Zhang(张楠)1, Zhuojian Xiao(肖卓建)1,3, Wenbin Zhou(周文斌)1, Feng Yang(杨丰)1,3, Yanchun Wang(王艳春)1,2,3, Huaping Liu(刘华平)1,2,3, Weiya Zhou(周维亚)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h, based on an improved chemical vapor deposition method. As-prepared fibers are further post-treated by acid. According to the SEM images and Raman spectra, the acid treatment results in the compaction and surface modification of the CNTs in fibers, which are beneficial for the electron and load transfer. Compared to the HNO3 treatment, HClSO3 or H2SO4 treatment is more effective for the improvement of the fibers' properties. After HClSO3 treatment for 2 h, the fibers' strength and electrical conductivity reach up to ~2 GPa and ~4.3 MS/m, which are promoted by ~200% and almost one order of magnitude than those without acid treatment, respectively. The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension. The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength. With the HClSO3 treatment, the strain transfer factor is enhanced from ~3.9% to ~53.6%.

Keywords:  carbon nanotube fiber      electrical conductivity      mechanical property      performance improvement  
Received:  08 November 2016      Revised:  16 November 2016      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  78.30.-j (Infrared and Raman spectra)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB932302), the National Natural Science Foundation of China (Grant Nos. 11634014, 51172271, 51372269, and 51472264), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09040202).

Corresponding Authors:  Weiya Zhou     E-mail:  wyzhou@iphy.ac.cn

Cite this article: 

Qiang Zhang(张强), Kewei Li(李克伟), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Nan Zhang(张楠), Zhuojian Xiao(肖卓建), Wenbin Zhou(周文斌), Feng Yang(杨丰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚) Performance improvement of continuous carbon nanotube fibers by acid treatment 2017 Chin. Phys. B 26 028802

[1] De Volder M F L, Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535
[2] Ma W J, Song L, Yang R, Zhang T H, Zhao Y C, Sun L F, Ren Y, Liu D F, Liu L F, Shen J, Zhang Z X, Xiang Y J, Zhou W Y and Xie S S 2007 Nano Lett. 7 2307
[3] Behabtu N, Green M J and Pasquali M 2008 Nano Today 3 24
[4] Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J and Pasquali M 2013 Science 339 182
[5] Chae H G and Kumar S 2008 Science 319 908
[6] Cleuziou J P, Wernsdorfer W, Bouchiat V, Ondarcuhu T and Monthioux M 2006 Nature Nanotech. 1 53
[7] Cheng Q, Bao J, Park J, Liang Z, Zhang C and Wang B 2009 Adv. Funct. Mater. 19 3219
[8] Lima M D, Li N, de Andrade M J, Fang S, Oh J, Spinks G M, Kozlov M E, Haines C S, Suh D, Foroughi J, Kim S J, Chen Y, Ware T, Shin M K, Machado L D, Fonseca A F, Madden J D W, Voit W E, Galvao D S and Baughman R H 2012 Science 338 928
[9] Jiang K L, Li Q Q and Fan S S 2002 Nature 419 801
[10] Ericson L M, Fan H, Peng H Q, Davis V A, Zhou W, Sulpizio J, Wang Y H, Booker R, Vavro J, Guthy C, Parra-Vasquez A N G, Kim M J, Ramesh S, Saini R K, Kittrell C, Lavin G, Schmidt H, Adams W W, Billups W E, Pasquali M, Hwang W F, Hauge R H, Fischer J E and Smalley R E 2004 Science 305 1447
[11] Li Y L, Kinloch I A and Windle A H 2004 Science 304 276
[12] Roenbeck M R, Furmanchuk A o, An Z, Paci J T, Wei X, Nguyen S T, Schatz G C and Espinosa H D 2015 Nano Lett. 15 4504
[13] Liu Q, Li M, Gu Y, Zhang Y, Wang S, Li Q and Zhang Z 2014 Nanoscale 6 4338
[14] Beese A M, Wei X, Sarkar S, Ramachandramoorthy R, Roenbeck M R, Moravsky A, Ford M, Yavari F, Keane D T, Loutfy R O, Nguyen S T and Espinosa H D 2014 ACS Nano 8 11454
[15] Naraghi M, Filleter T, Moravsky A, Locascio M, Loutfy R O and Espinosa H D 2010 ACS Nano 4 6463
[16] Ma W J, Liu L Q, Zhang Z, Yang R, Liu G, Zhang T H, An X F, Yi X S, Ren Y, Niu Z Q, Li J Z, Dong H B, Zhou W Y, Ajayan P M and Xie S S 2009 Nano Lett. 9 2855
[17] Ma W J, Liu L Q, Yang R, Zhang T H, Zhang Z, Song L, Ren Y, Shen J, Niu Z Q, Zhou W Y and Xie S S 2009 Adv. Mater. 21 603
[18] Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M and Windle A 2007 Science 318 1892
[19] Aleman B, Reguero V, Mas B and Vilatela J J 2015 ACS Nano 9 7392
[20] Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47
[21] Zhang M, Atkinson K R and Baughman R H 2004 Science 306 1358
[22] Liu G, Zhao Y, Deng K, Liu Z, Chu W, Chen J, Yang Y, Zheng K, Huang H, Ma W, Song L, Yang H, Gu C, Rao G, Wang C, Xie S and Sun L 2008 Nano Lett. 8 1071
[23] Li Q, Liu C, Lin Y-H, Liu L, Jiang K and Fan S 2015 ACS Nano 9 409
[24] Geng H Z, Kim K K, So K P, Lee Y S, Chang Y and Lee Y H 2007 J. Am. Chem. Soc. 129 7758
[25] Dan B, Irvin G C and Pasquali M 2009 ACS Nano 3 835
[26] Meng F C, Zhao J N, Ye Y T, Zhang X H and Li Q W 2012 Nanoscale 4 7464
[27] Wang K, Li M, Liu Y N, Gu Y Z, Li Q W and Zhang Z G 2014 Appl. Surf. Sci. 292 469
[28] Shin D W, Lee J H, Kim Y H, Yu S M, Park S Y and Yoo J B 2009 Nanotechnology 20 475703
[29] Miko C, Milas M, Seo J W, Gaal R, Kulik A and Forro L 2006 Appl. Phys. Lett. 88 151905
[30] Li Q W, Li Y, Zhang X F, Chikkannanavar S B, Zhao Y H, Dangelewicz A M, Zheng L X, Doorn S K, Jia Q X, Peterson D E, Arendt P N and Zhu Y T 2007 Adv. Mater. 19 3358
[31] Wang J N, Luo X G, Wu T and Chen Y 2014 Nat. Commun. 5 3848
[32] Di J T, Hu D M, Chen H Y, Yong Z Z, Chen M H, Feng Z H, Zhu Y T and Li Q W 2012 ACS Nano 6 5457
[33] Vilatela J J, Deng L, Kinloch I A, Young R J and Windle A H 2011 Carbon 49 4149
[34] Cronin S B, Swan A K, Unlu M S, Goldberg B B, Dresselhaus M S and Tinkham M 2005 Phys. Rev. B 72 035425
[1] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[4] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[5] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[6] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[7] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[8] Electronic and thermoelectric properties of alkali metal-based perovskites CsYbF3 and RbYbF3
Q Mahmood, N A Noor, T Ghrib, Nessrin A Kattan, Asif Mahmood, and Shahid M Ramay. Chin. Phys. B, 2020, 29(11): 117305.
[9] Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction
Li-Dong Dai(代立东), Hai-Ying Hu(胡海英), He-Ping Li(李和平), Wen-Qing Sun(孙文清), Jian-Jun Jiang(蒋建军). Chin. Phys. B, 2018, 27(2): 028703.
[10] Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide
Jun Li(李君), Shuang Xu(徐爽), Jin-Yong Zhang(张金咏), Li-Sheng Liu(刘立胜), Qi-Wen Liu(刘齐文), Wu-Chang She(佘武昌), Zheng-Yi Fu(傅正义). Chin. Phys. B, 2017, 26(4): 047101.
[11] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[12] Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review
J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier. Chin. Phys. B, 2017, 26(1): 016402.
[13] Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach
Zicong Zhou(周子聪), Béla Joós. Chin. Phys. B, 2016, 25(8): 088701.
[14] Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage
E Lotfi, H Rezania, B Arghavaninia, M Yarmohammadi. Chin. Phys. B, 2016, 25(7): 076102.
[15] Effects of tilt interface boundary on mechanical properties of Cu/Ni nanoscale metallic multilayer composites
Yang Meng (杨萌), Xu Jian-Gang (徐建刚), Song Hai-Yang (宋海洋), Zhang Yun-Guang (张云光). Chin. Phys. B, 2015, 24(9): 096202.
No Suggested Reading articles found!