INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Performance improvement of continuous carbon nanotube fibers by acid treatment |
Qiang Zhang(张强)1,3, Kewei Li(李克伟)1, Qingxia Fan(范庆霞)1,3, Xiaogang Xia(夏晓刚)1,3, Nan Zhang(张楠)1, Zhuojian Xiao(肖卓建)1,3, Wenbin Zhou(周文斌)1, Feng Yang(杨丰)1,3, Yanchun Wang(王艳春)1,2,3, Huaping Liu(刘华平)1,2,3, Weiya Zhou(周维亚)1,2,3 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h, based on an improved chemical vapor deposition method. As-prepared fibers are further post-treated by acid. According to the SEM images and Raman spectra, the acid treatment results in the compaction and surface modification of the CNTs in fibers, which are beneficial for the electron and load transfer. Compared to the HNO3 treatment, HClSO3 or H2SO4 treatment is more effective for the improvement of the fibers' properties. After HClSO3 treatment for 2 h, the fibers' strength and electrical conductivity reach up to ~2 GPa and ~4.3 MS/m, which are promoted by ~200% and almost one order of magnitude than those without acid treatment, respectively. The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension. The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength. With the HClSO3 treatment, the strain transfer factor is enhanced from ~3.9% to ~53.6%.
|
Received: 08 November 2016
Revised: 16 November 2016
Accepted manuscript online:
|
PACS:
|
88.30.rh
|
(Carbon nanotubes)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
61.48.De
|
(Structure of carbon nanotubes, boron nanotubes, and other related systems)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB932302), the National Natural Science Foundation of China (Grant Nos. 11634014, 51172271, 51372269, and 51472264), and the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA09040202). |
Corresponding Authors:
Weiya Zhou
E-mail: wyzhou@iphy.ac.cn
|
Cite this article:
Qiang Zhang(张强), Kewei Li(李克伟), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Nan Zhang(张楠), Zhuojian Xiao(肖卓建), Wenbin Zhou(周文斌), Feng Yang(杨丰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚) Performance improvement of continuous carbon nanotube fibers by acid treatment 2017 Chin. Phys. B 26 028802
|
[1] |
De Volder M F L, Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535
|
[2] |
Ma W J, Song L, Yang R, Zhang T H, Zhao Y C, Sun L F, Ren Y, Liu D F, Liu L F, Shen J, Zhang Z X, Xiang Y J, Zhou W Y and Xie S S 2007 Nano Lett. 7 2307
|
[3] |
Behabtu N, Green M J and Pasquali M 2008 Nano Today 3 24
|
[4] |
Behabtu N, Young C C, Tsentalovich D E, Kleinerman O, Wang X, Ma A W K, Bengio E A, ter Waarbeek R F, de Jong J J, Hoogerwerf R E, Fairchild S B, Ferguson J B, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto M J and Pasquali M 2013 Science 339 182
|
[5] |
Chae H G and Kumar S 2008 Science 319 908
|
[6] |
Cleuziou J P, Wernsdorfer W, Bouchiat V, Ondarcuhu T and Monthioux M 2006 Nature Nanotech. 1 53
|
[7] |
Cheng Q, Bao J, Park J, Liang Z, Zhang C and Wang B 2009 Adv. Funct. Mater. 19 3219
|
[8] |
Lima M D, Li N, de Andrade M J, Fang S, Oh J, Spinks G M, Kozlov M E, Haines C S, Suh D, Foroughi J, Kim S J, Chen Y, Ware T, Shin M K, Machado L D, Fonseca A F, Madden J D W, Voit W E, Galvao D S and Baughman R H 2012 Science 338 928
|
[9] |
Jiang K L, Li Q Q and Fan S S 2002 Nature 419 801
|
[10] |
Ericson L M, Fan H, Peng H Q, Davis V A, Zhou W, Sulpizio J, Wang Y H, Booker R, Vavro J, Guthy C, Parra-Vasquez A N G, Kim M J, Ramesh S, Saini R K, Kittrell C, Lavin G, Schmidt H, Adams W W, Billups W E, Pasquali M, Hwang W F, Hauge R H, Fischer J E and Smalley R E 2004 Science 305 1447
|
[11] |
Li Y L, Kinloch I A and Windle A H 2004 Science 304 276
|
[12] |
Roenbeck M R, Furmanchuk A o, An Z, Paci J T, Wei X, Nguyen S T, Schatz G C and Espinosa H D 2015 Nano Lett. 15 4504
|
[13] |
Liu Q, Li M, Gu Y, Zhang Y, Wang S, Li Q and Zhang Z 2014 Nanoscale 6 4338
|
[14] |
Beese A M, Wei X, Sarkar S, Ramachandramoorthy R, Roenbeck M R, Moravsky A, Ford M, Yavari F, Keane D T, Loutfy R O, Nguyen S T and Espinosa H D 2014 ACS Nano 8 11454
|
[15] |
Naraghi M, Filleter T, Moravsky A, Locascio M, Loutfy R O and Espinosa H D 2010 ACS Nano 4 6463
|
[16] |
Ma W J, Liu L Q, Zhang Z, Yang R, Liu G, Zhang T H, An X F, Yi X S, Ren Y, Niu Z Q, Li J Z, Dong H B, Zhou W Y, Ajayan P M and Xie S S 2009 Nano Lett. 9 2855
|
[17] |
Ma W J, Liu L Q, Yang R, Zhang T H, Zhang Z, Song L, Ren Y, Shen J, Niu Z Q, Zhou W Y and Xie S S 2009 Adv. Mater. 21 603
|
[18] |
Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M and Windle A 2007 Science 318 1892
|
[19] |
Aleman B, Reguero V, Mas B and Vilatela J J 2015 ACS Nano 9 7392
|
[20] |
Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47
|
[21] |
Zhang M, Atkinson K R and Baughman R H 2004 Science 306 1358
|
[22] |
Liu G, Zhao Y, Deng K, Liu Z, Chu W, Chen J, Yang Y, Zheng K, Huang H, Ma W, Song L, Yang H, Gu C, Rao G, Wang C, Xie S and Sun L 2008 Nano Lett. 8 1071
|
[23] |
Li Q, Liu C, Lin Y-H, Liu L, Jiang K and Fan S 2015 ACS Nano 9 409
|
[24] |
Geng H Z, Kim K K, So K P, Lee Y S, Chang Y and Lee Y H 2007 J. Am. Chem. Soc. 129 7758
|
[25] |
Dan B, Irvin G C and Pasquali M 2009 ACS Nano 3 835
|
[26] |
Meng F C, Zhao J N, Ye Y T, Zhang X H and Li Q W 2012 Nanoscale 4 7464
|
[27] |
Wang K, Li M, Liu Y N, Gu Y Z, Li Q W and Zhang Z G 2014 Appl. Surf. Sci. 292 469
|
[28] |
Shin D W, Lee J H, Kim Y H, Yu S M, Park S Y and Yoo J B 2009 Nanotechnology 20 475703
|
[29] |
Miko C, Milas M, Seo J W, Gaal R, Kulik A and Forro L 2006 Appl. Phys. Lett. 88 151905
|
[30] |
Li Q W, Li Y, Zhang X F, Chikkannanavar S B, Zhao Y H, Dangelewicz A M, Zheng L X, Doorn S K, Jia Q X, Peterson D E, Arendt P N and Zhu Y T 2007 Adv. Mater. 19 3358
|
[31] |
Wang J N, Luo X G, Wu T and Chen Y 2014 Nat. Commun. 5 3848
|
[32] |
Di J T, Hu D M, Chen H Y, Yong Z Z, Chen M H, Feng Z H, Zhu Y T and Li Q W 2012 ACS Nano 6 5457
|
[33] |
Vilatela J J, Deng L, Kinloch I A, Young R J and Windle A H 2011 Carbon 49 4149
|
[34] |
Cronin S B, Swan A K, Unlu M S, Goldberg B B, Dresselhaus M S and Tinkham M 2005 Phys. Rev. B 72 035425
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|