Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 088701    DOI: 10.1088/1674-1056/25/8/088701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach

Zicong Zhou(周子聪)1, Béla Joós2
1 Department of Physics, Tamkang University, Taiwan, China;
2 Ottawa Carleton Institute for Physics, University of Ottawa Campus, Ottawa, Ontario, Canada, K1 N-6 N5
Abstract  

We study the effect of a force-free end on the mechanical property of a stretched biopolymer. The system can be divided into two parts. The first part consists of the segment counted from the fixed point (i.e., the origin) to the forced point in the biopolymer, with arclength Lf. The second part consists of the segment counted from the forced point to the force-free end with arclength ΔL. We apply the path integral technique to find the relationship between these two parts. At finite temperature and without any constraint at the end, we show exactly that if we focus on the quantities related to the first part, then we can ignore the second part completely. Monte Carlo simulation confirms this conclusion. In contrast, the effect for the quantities related to the second part is dependent on what we want to observe. A force-free end has little effect on the relative extension, but it affects seriously the value of the end-to-end distance if ΔL is comparable to Lf.

Keywords:  statistical physics      path integral      biopolymers      mechanical property  
Received:  10 November 2015      Revised:  30 March 2016      Accepted manuscript online: 
PACS:  87.10.Pq (Elasticity theory)  
  36.20.Ey (Conformation (statistics and dynamics))  
  87.15.A- (Theory, modeling, and computer simulation)  
  87.10.-e (General theory and mathematical aspects)  
Fund: 

Project supported by the MOST and the NSERC (Canada).

Corresponding Authors:  Zicong Zhou     E-mail:  zzhou@mail.tku.edu.tw

Cite this article: 

Zicong Zhou(周子聪), Béla Joós Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach 2016 Chin. Phys. B 25 088701

[1] Kratky O and Porod G 1949 Recl. Trav. Chim. Pays-Bas 68 1106
[2] Smith S B, Finzi L and Bustamante C 1992 Science 258 1122
[3] Hernandez L I, Ramnarain S P, Huff E J and Wang Y K 1993 Science 262 110
[4] Marko J F and Siggia E D 1994 Science 265 506
[5] Bustamante C, Marko J F, Siggia E D and Smith S 1994 Science 265 1599
[6] Cluzel P, Lebrun A, Heller C, Lavery R, Viovy J L, Chatenay D and Caron F 1996 Science 271 792
[7] Strick T R, Allemand J F, Bensimon D, Bensimon A and Croquette V 1996 Science 271 1835
[8] Fain B, Rudnick J and Östlund S 1997 Phys. Rev. E 55 7364
[9] Moroz J D and Nelson P C 1997 Proc. Natl. Acad. Sci. USA 94 14418
[10] Nelson P C 1998 Phys. Rev. Lett. 80 5810
[11] Zhou H, Zhang Y and Ou-Yang Z C 1999 Phys. Rev. Lett. 82 4560
[12] Panyukov S V and Rabin Y 2000 Phys. Rev. E 62 7135
[13] Maier B, Seifert U and Radler J O 2002 Europhys. Lett. 60 622
[14] Kessler D A and Rabin Y 2003 Phys. Rev. Lett. 90 024301
[15] Kulić I M, Mohrbach H, Thaokar R and Schiessel H 2007 Phys. Rev. E 75 011913
[16] Prasad A, Hori Y and Kondev J 2005 Phys. Rev. E 72 041918
[17] Vaillant C, Audit B and Arnéodo A 2005 Phys. Rev. Lett. 95 068101
[18] Zhou Z, Lai P Y and Joós B 2005 Phys. Rev. E 71 052801
[19] Moukhtar J, Fontaine E, Faivre-Moskalenko C and Arnéodo A 2007 Phys. Rev. Lett. 98 178101
[20] Popov Y O and Tkachenko A V 2007 Phys. Rev. E 76 021901
[21] Zhou Z 2007 Phys. Rev. E 76 061913
[22] Zhou Z and Joós B 2008 Phys. Rev. E 77 061906
[23] Zhou Z and Joós B 2009 Phys. Rev. E 80 061911
[24] Ji C, Zhang L Y, Hou X M, Dou S X and Wang P Y 2011 Chin. Phys. Lett. 28 068702
[25] Lei X L, Fang H P and Qi W P 2013 Chin. Phys. Lett. 30 128701
[26] Yao M, Qiu W, Liu R, Efremov A K, Cong P, Seddiki R, Payre M, Lim C T, Ladoux B, Mege R M and Yan J 2014 Nat. Commun. 5 4525
[27] Yao M, Goult B T, Chen H, Cong P, Sheetz M P and Yan J 2014 Sci. Rep. 4 4610
[28] Zhou Z, Lin F T, Hung C Y, Wu H Y and Chen B H 2014 J. Phys. Soc. Jpn. 83 044802
[29] Lin F T, Chen B H and Zhou Z 2015 Chin. Phys. B 24 028701
[30] Chaichian M and Demichev A 2001 Path Integrals in Physics:Stochastic Process and Quantum Mechanics, Vol. 1 (Bristol:IOP Publishing Ltd)
[31] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York:McGraw-Hill Book Company)
[32] Wiegel F W 1986 Introduction to Path-Integral Methods in Physics and Polymer Science (Singapore:World Scientific)
[33] Kleinert H 2009 Path integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th edn. (Singapore:World Scientific).
[1] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[2] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[3] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[4] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[5] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[6] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[7] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[8] Second-order interference of two independent photons with different spectra
Yu Zhou(周宇), Jian-Bin Liu(刘建彬), Huai-Bin Zheng(郑淮斌), Hui Chen(陈辉), Fu-Li Li(李福利), Zhuo Xu(徐卓). Chin. Phys. B, 2019, 28(10): 104205.
[9] Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide
Jun Li(李君), Shuang Xu(徐爽), Jin-Yong Zhang(张金咏), Li-Sheng Liu(刘立胜), Qi-Wen Liu(刘齐文), Wu-Chang She(佘武昌), Zheng-Yi Fu(傅正义). Chin. Phys. B, 2017, 26(4): 047101.
[10] First principles investigation of protactinium-based oxide-perovskites for flexible opto—electronic devices
Nazia Erum, Muhammad Azhar Iqbal. Chin. Phys. B, 2017, 26(4): 047102.
[11] Rapidly calculating the partition function of macroscopic systems
Jing-Tian Li(李菁田), Bo-Yuan Ning(宁博元), Le-Cheng Gong(龚乐诚), Jun Zhuang(庄军), Xi-Jing Ning(宁西京). Chin. Phys. B, 2017, 26(3): 030501.
[12] Performance improvement of continuous carbon nanotube fibers by acid treatment
Qiang Zhang(张强), Kewei Li(李克伟), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Nan Zhang(张楠), Zhuojian Xiao(肖卓建), Wenbin Zhou(周文斌), Feng Yang(杨丰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(2): 028802.
[13] Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
Jianbin Liu(刘建彬), Jingjing Wang(王婧婧), Zhuo Xu(徐卓). Chin. Phys. B, 2017, 26(1): 014201.
[14] Secondary relaxation and dynamic heterogeneity in metallic glasses: A brief review
J C Qiao(乔吉超), Q Wang, D Crespo, Y Yang(杨勇), J M Pelletier. Chin. Phys. B, 2017, 26(1): 016402.
[15] Path integral approach to electron scattering in classical electromagnetic potential
Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏). Chin. Phys. B, 2016, 25(5): 050303.
No Suggested Reading articles found!