Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 025202    DOI: 10.1088/1674-1056/27/2/025202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electric field in two-dimensional complex plasma crystal: Simulated lattices

Behnam Bahadory
Atomic and Molecular Department, Physics Faculty, Yazd University, Yazd 8915818411, Iran
Abstract  We focus on molecular dynamics simulated two-dimensional complex plasma crystals. We use rigid walls as a confinement force and produce square and rectangular crystals. We report various types of two-row crystals. The narrow and long crystals are likely to be used as wigglers; therefore, we simulate such crystals. Also, we analyze the electric fields of simulated crystals. A bit change in lattice parameters can change the internal structures of crystals and their electric fields notably. These parameters are the number of grains, grains charge, length, and width of the crystal. With the help of electric fields, we show the details of crystal structures.
Keywords:  complex plasma      plasma crystal      free-electron laser  
Received:  03 September 2017      Revised:  20 October 2017      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.58.-c (Other confinement methods)  
  41.60.Cr (Free-electron lasers)  
Corresponding Authors:  Behnam Bahadory     E-mail:  Bahadory@yazd.ac.ir
About author:  52.27.Lw; 52.58.-c; 41.60.Cr

Cite this article: 

Behnam Bahadory Electric field in two-dimensional complex plasma crystal: Simulated lattices 2018 Chin. Phys. B 27 025202

[1] Vladimirov S V and Samarian A A 2007 Plasma Phys Control Fusion 49 B95
[2] Genzel R 2006 Annual MPE Report 293 (Munich:Max-Planck-Institut für extraterrestrische Physik)
[3] Shukla P K and Mamun A A 2001 Introduction to dusty plasma physics (Bristol:Institute of Physics Publishing)
[4] Feng Y, Goree J and Liu B 2010 Phys. Rev. E 82 036403
[5] Sodha M S 2014 Kinetics of complex plasmas (New Delhi:Springer)
[6] Hartmann P, Donkó I and Donkó Z 2013 Rev. Sci. Instrum. 84 023501
[7] Thompson C, O'angelo N and Merlino R L 1999 Phys. Plasmas 6 1421
[8] Heijmans L C J and Nijdam S 2016 Phys. Plasmas 23 043703
[9] Schmidt C and Piel A 2016 Phys. Plasmas 23 083704
[10] Vladimirov S V, Ostrikov K and Samarian A A 2005 Physics and applications of complex plasmas (London:Imperial College Press)
[11] Shahzad A and He M G 2016 Phys. Plasmas 23 093708
[12] Haralson Z and Goree J 2016 Phys. Plasmas 23 093703
[13] Ishihara O 2007 J. Phys. D:Appl. Phys. 40 R121
[14] Coëdel L, Nosenko V, Ivlev A V, Zhdanov S K, Thomas H M and Morfill G E 2010 Phys. Rev. Lett. 104 195001
[15] Hartmann P, Rosenberg M, Kalman G J and Donkó Z 2011 Phys. Rev. E 84 016409
[16] Nosenko V, Ivlev A V and Morfill G E 2013 Phys. Rev. E 87 043115
[17] Petrov O F, Vasiliev M M, Vaulina O S, Stacenko K B, Vasilieva E V, Lisin E A, Tun Y and Fortov V E 2015 Europhys. Lett. 111 45002
[18] Bonitz M, Horing N and Ludwig P 2010 Introduction to complex plasmas, Vol. 59(Cham:Springer)
[19] Liu Y H, Chew L Y and Yu M Y 2008 Phys. Rev. E 78 066405
[20] Zhdanov S K, Thoma M H, Knapek C A and Morfill G E 2012 New J. Phys. 14 023030
[21] Puttscher M and Melzer A 2014 New J. Phys. 16 043026
[22] Reichstein T, Wilms J and Piel A 2013 IEEE Trans. Plasma Sci. 41 759
[23] Djouder M, Kermoun F, Mitiche M D and Lamrous O 2016 Phys. Plasmas 23 013701
[24] Bahadory B and Mirzanejhad S 2011 Phys. Scripta 84 035501
[25] Huang F, Liu Y H, Chen Z Y, Wang L and Ye M F 2013 Chin. Phys. Lett. 30 115201
[26] Yan J, Feng F, Liu F, Dong L and He Y 2016 Chin. Phys. B 25 095202
[27] Yan J, Feng F, Liu F C and He Y F 2017 Chin. Phys. B 26 095202
[28] Mirzanejhad S and Bahadory B 2007 Phys. Plasmas 14 043101
[29] Fortov V, Iakubov I and Khrapak A 2006 Physics of strongly coupled plasma, Vol. 135(Oxford:Oxford University Press)
[30] Saitou Y, Nakamura Y, Kamimura T and Ishihara O 2012 Phys. Rev. Lett. 108 065004
[31] Liu B and Goree J 2014 Phys. Rev. E 89 043107
[32] Joyce G, Lampe M and Ganguli G 2001 IEEE Trans. Plasma Sci. 29 238
[33] Piel A and Wilms J 2016 Phys. Plasmas 23 073701
[1] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[2] Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser
Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明). Chin. Phys. B, 2020, 29(8): 084101.
[3] Plural interactions of space charge wave harmonics during the development of two-stream instability
Victor Kulish, Alexander Lysenko, Michael Rombovsky, Vitaliy Koval, Iurii Volk. Chin. Phys. B, 2015, 24(9): 095201.
[4] Effects of self-fields on electron trajectory and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding
S. Saviz, M. Karimi. Chin. Phys. B, 2014, 23(3): 034103.
[5] Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser
Ji Yu-Pin (吉驭嫔), Wang Shi-Jian (王时建), Xu Jing-Yue (徐竟跃), Xu Yong-Gen (徐勇根), Liu Xiao-Xu (刘晓旭), Lu Hong (卢宏), Huang Xiao-Li (黄小莉), Zhang Shi-Chang (张世昌). Chin. Phys. B, 2014, 23(2): 024103.
[6] Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump
A. Hasanbeigi, H. Mehdiank. Chin. Phys. B, 2013, 22(7): 075205.
[7] Three-dimensional simulation of long-wavelength free-electron lasers with helical wiggler and ion-channel guiding
F. Jafari Bahman, B. Maraghechi. Chin. Phys. B, 2013, 22(7): 074102.
[8] Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler
Maryam Zahedian, B. Maraghechi, and M.H. Rouhani . Chin. Phys. B, 2012, 21(3): 034101.
[9] Dispersion relations of lattice waves in three-dimensional strongly coupled complex plasma crystals
Yang Xue-Feng(杨雪峰), Wang Xiao-Gang(王晓钢), and Liu Yue(刘悦). Chin. Phys. B, 2009, 18(11): 4938-4943.
No Suggested Reading articles found!