Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 025204    DOI: 10.1088/1674-1056/26/2/025204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Detailed calibration of the PI-LCX: 1300 high performance single photon counting hard x-ray CCD camera

Wei Hong(洪伟), Xian-Lun Wen(温贤伦), Lai Wei(魏来), Bin Zhu(朱斌), Yu-Chi Wu(吴玉迟), Ke-Gong Dong(董克攻), Chun-Ye Jiao(焦春晔), Bo Wu(伍波), Ying-Ling He(何颖玲), Fa-Qiang Zhang(张发强), Wei-Min Zhou(周维民), Yu-Qiu Gu(谷渝秋)
Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  X-ray charge-coupled-device (CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode (model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 keV with good energy resolution (EE≈100 at 60 keV). The difference in detection efficiency between two CCD cameras is small (5.6% at 5.89 keV), but the difference in fraction of the single pixel event between them is much larger (25% at 8.04 keV). The obtained small relative error of detection efficiency (2.4% at 5.89 keV) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 keV-30 keV.
Keywords:  hard x-ray detector      single photon counting CCD      calibration      laser plasmas  
Received:  19 October 2016      Revised:  22 November 2016      Accepted manuscript online: 
PACS:  52.38.-r (Laser-plasma interactions)  
  52.59.Px (Hard X-ray sources)  
  52.70.La (X-ray and γ-ray measurements)  
  07.85.Nc (X-ray and γ-ray spectrometers)  
Fund: Project supported by the Science Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0103003 and 2012B0102008) and the National High-Tech Inertial Confinement Fusion Committee of China.
Corresponding Authors:  Wei Hong     E-mail:  jminhong@126.com

Cite this article: 

Wei Hong(洪伟), Xian-Lun Wen(温贤伦), Lai Wei(魏来), Bin Zhu(朱斌), Yu-Chi Wu(吴玉迟), Ke-Gong Dong(董克攻), Chun-Ye Jiao(焦春晔), Bo Wu(伍波), Ying-Ling He(何颖玲), Fa-Qiang Zhang(张发强), Wei-Min Zhou(周维民), Yu-Qiu Gu(谷渝秋) Detailed calibration of the PI-LCX: 1300 high performance single photon counting hard x-ray CCD camera 2017 Chin. Phys. B 26 025204

[1] Chen L M, Kando M, Xu M H, Li Y T, Koga J, Chen M, Xu H, Yuan X H, Dong Q L, Sheng Z M, Bulanov S V, Kato Y, Zhang J and Tajima T 2008 Phys. Rev. Lett. 100 045004
[2] Stoeckl C, Theobald W, Sangster T C, Key M H, Patel P, Zhang B B, Clarke R, Karsch S and Norreys P 2004 Rev. Sci. Instrum. 75 3705
[3] Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J P, Umstadter D and Hulin D 2004 Phys. Rev. Lett. 93 135005
[4] Francis H J, Flint I, Holland A D and Wells A 1992 Institute of Physics Conference Series 121 pp. 9-16
[5] Fourment C, Arazam N, Bonte C, Caillaud T, Descamps D, Dorchies F, Harmand M, Hulin S, Petit S and Santos J J 2009 Rev. Sci. Instrum. 80 083505
[6] Arora V, Vora H S, Chakera J A, Tayyab M, Naik P A and Gupta P D 2013 Journal of Instrumentation 8 P01010
[7] Stoeckl C, Theobald W, Sangster T C, Key M H, Patel P, Zhang B B, Clarke R, Karsch S and Norreys P 2004 Rev. Sci. Instrum. 75 3705
[8] Fourmaux S, Corde S, Phuoc K T, Leguay P M, Payeur S, Lassonde P, Gnedyuk S, Lebrun G, Fourment C, Malka V, Sebban S, Rousse A and Kieffer J C 2011 New J. Phys. 13 033017
[9] Labate L, Giulietti A, Giulietti D, Koster P, Levato T, Gizzi L A, Zamponi F, Lubcke A, Kampfer T, Uschmann I and Forster E 2007 Rev. Sci. Instrum. 78 103506
[10] Landen O L, Farley D R, Glendinning S G, et al. 2001 Rev. Sci. Instrum. 72 627
[11] Labate L, Levato T, Galimberti M, Giulietti A, Giulietti D, Sanna M, Traino C, Lazzeri M and Gizzi L A 2008 Nucl. Instrum. Method A 594 278
[12] Ott R, Macdonald J and Wells K 2000 Phys. Med. Biol. 45 2011
[13] Ishiwatari T, Beer G, Bragadireanu A M, et al. 2006 Nucl. Instrum. Method A 556 509
[14] Cargnelli M, Fuhrmann H, Giersch M, Gruber A, Hirtl A, Ishiwatari T, Kienle P, Marton J and Zmeskal J 2004 Nucl. Instrum. Method A 535 389
[15] Lumb D H 1990 Nucl. Instrum. Method A 290 559
[16] Howe J, Chambers D M, Courtois C, Forster E, Gregory C D, Hall I M, Renner O, Uschmann I and Woolsey N C 2006 Rev. Sci. Instrum. 77 036105
[17] Nishiuchi M, Koyama K, Awaki H, Tsuru T, Sakano M, Hamaguchi K, Murakami H, Tsunemi H, Hayashida K, Kitamoto S, Miyata E, Dotani T, Ozaki M, Bautz M, Doty J, Kissel S, Foster R and Ricker G 1999 Nucl. Instrum Method A 436 79
[18] Labate L, Galimberti M, Giulietti A, Giulietti D, Gizzi L A, Tomassini P and Di Cocco G 2002 Nucl. Instrum Method A 495 148
[19] Kraft R P, Nousek J A, Lumb D H, Burrows D N, Skinner M A and Garmire G P 1995 Nucl. Instrum. Method A 366 192
[20] Bootsma T M V, Van Zwet E J, Brinkman A C, Den Herder J W, De Jong L, De Korte P and Olsthoorn S M 2000 Nucl. Instrum. Method A 439 575
[21] Maddox B R, Park H S, Remington B A and Mckernan M 2008 Rev. Sci. Instrum. 79 10E924
[22] Chun H J, Bowles J A, Branduardi-Raymont G and Gowen R A 1996 Nucl. Instrum. Method. A 376 254
[23] Levato T, Labate L, Galimberti M, Giulietti A, Giulietti D and Gizzi L A 2008 Nucl. Instrum. Method A 592 346
[24] http://www.esrf.eu/Instrumentation/software/data-analysis/xop2.4
[25] Lumb D H, Chowanietz E G and Wells A 1987 Opt. Eng. (Bellingham) 26 773
[26] Hopkinson G R 1987 Opt. Eng. 26 268766
[27] Tsunemi H, Hiraga J and Miyata E 2002 Nucl. Instrum. Method A 477 155
[28] Pavlov G G and Nousek J A 1999 Nucl. Instrum. Method A 428 348
[29] Tsunemi H, Hiraga J, Mori K, Yoshita K and Miyata E 1999 Nucl. Instrum. Method A 436 32
[30] Prigozhin G, Rasmussen A, Bautz M and Ricker G 1998 X-Ray Optics, Instruments, and Missions, Proc. SPIE 3444, July 19, 1998, San Diego, CA, USA, p. 267
[31] Fowler R F, Ashby J V and Greenough C 2000 Nucl. Instrum. Method A 450 75
[32] Hiraga J, Tsunemi H, Yoshita K, Katayama H and Hayashida K 1999 Euv, X-Ray, and Gamma-Ray Instrumentation for Astronomy X, p. 291
[33] Hiraga J, Tsunemi H, Yoshita K and Miyata E 1999 Astron. Nachr. 320 371
[34] Hiraga J, Tsunemi H and Miyata E 2001 Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers 40 1493
[35] Mccarthy K J, Owens A, Holland A D and Wells A A 1995 Nucl. Instrum. Method A 362 538
[36] Townsley L K, Broos P S, Chartas G, Moskalenko E, Nousek J A and Pavlov G G 2002 Nucl. Instrum. Method A 486 716
[37] Tsuneml H, Hiraga J, Yoshita K and Kitamoto S 1998 Jpn. J. Appl. Phys. 37 2734
[38] Mccarthy K J, Owens A, Holland A D and Wells A A 1995 Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 362 538
[1] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[2] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[3] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[4] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[5] A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment
Kun-Yang Wang(王坤阳), Jie Shao(邵杰), Li-Gang Shao(邵李刚), Jia-Jin Chen(陈家金), Gui-Shi Wang(王贵师), Kun Liu(刘琨), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2021, 30(5): 054203.
[6] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
[7] A novel multifunctional electronic calibration kit integrated by MEMS SPDT switches
Shan-Shan Wang(王姗姗), Qian-Nan Wu(吴倩楠), Yue-Sheng Gao(高跃升), Jian-Gang Yu(余建刚), Qian-Long Cao(曹钎龙), Lu-Lu Han(韩路路), and Meng-Wei Li(李孟委). Chin. Phys. B, 2021, 30(11): 118501.
[8] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[9] Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas
L Wu(吴磊), M G Su(苏茂根), Q Min(敏琦), S Q Cao(曹世权), S Q He(何思奇), D X Sun(孙对兄), C Z Dong(董晨钟). Chin. Phys. B, 2019, 28(7): 075201.
[10] Digitally calibrated broadband dual-comb gases absorption spectral measurements
Xinyi Chen(陈馨怡), Weipeng Zhang(张伟鹏), Haoyun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2019, 28(6): 060703.
[11] Calibration and data restoration of light field modulated imaging spectrometer
Li-Juan Su(苏丽娟), Qiang-Qiang Yan(严强强), Yan Yuan(袁艳), Shi-Feng Wang(王世丰), Yu-Jian Liu(刘宇健). Chin. Phys. B, 2018, 27(8): 080702.
[12] Calibration of the superconducting gravimeter based on a cold atom absolute gravimeter at NIM
Qiyu Wang(王启宇), Jinyang Feng(冯金扬), Shaokai Wang(王少凯), Wei Zhuang(庄伟), Yang Zhao(赵阳), Lishuang Mou(牟丽爽), Shuqing Wu(吴书清). Chin. Phys. B, 2018, 27(12): 123701.
[13] Error analysis and optimal design of polarization calibration unit for solar telescope
Jun-Feng Hou(侯俊峰), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇), Ying-Zi Sun(孙英姿), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2017, 26(8): 089501.
[14] Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis
Wei-Ning Zhao(赵维宁), Wei Fang(方伟), Li-Wei Sun(孙立微), Li-Hong Cui(崔立红), Yu-Peng Wang(王玉鹏). Chin. Phys. B, 2016, 25(9): 090701.
[15] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
No Suggested Reading articles found!